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Abstract. This article explores the novel concept of modeling lossy capacitive sensors as fractional
capacitors and leveraging fractional oscillators a signal conditioning circuit to enhance sensor
performance. The fractional oscillator offers several distinct advantages, notably, detecting a wide
range of leakage resistance and capacitance values, while also enabling determination of sensor
location within the circuit. To address low leakage resistance sensing, the oscillator is designed at 100
kHz, with comprehensive considerations for non-idealities such as limited gain and gain-bandwidth
product. A simplified theory for analyzing the stability of the oscillator is discussed in which the
stability is determined by comparing imaginary frequency to oscillating frequency.
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Introduction

Oscillators are best known for two major applications viz. signal generator and signal
conditioning circuit [1-3]. Resistive and capacitive sensors can easily be interfaced with an
oscillator circuit for detection of various physical parameters like moisture, water level, vapors,
different types of gases etc. The basic principle is that the change in physical parameter changes
the oscillating frequency of the circuit. The oscillator will oscillate only when the roots of the
characteristics equation lie on the jm-axis or on the right side of s-plane. Therefore, while
designing oscillator as a signal conditioning circuit, its stability has to be taken care of. Most of
the oscillators are second order circuits. When resistive and capacitive sensors are interfaced to
the oscillator they preserve the order of the circuit. However, when lossy capacitive sensors are
interfaced they reduce the order of the oscillator. It is because most of the lossy capacitors have a
constant phase behaviour in a certain frequency range and therefore can be modelled as a
fractional capacitor having an impedance:

1
ZF = F_So‘ ) (1)

where F is called is its fractance and o is called its order. Therefore, when lossy capacitive
sensors are interfaced to the oscillator, its order reduces and the circuit may not function
properly. This is explained in the next paragraph.

Let a second order oscillator have a loop transfer function:

Ti(s) =

It is assumed that order n = 2 is obtained by using two ideal capacitors in fig. 1,a.

1
s24s+1 (2)

60



OJIEKTPOHUKA | Omnekrponuka, poTonuka u kubeppusmdeckue cucrempl. 2023. T.3. Ne3

Integer order Fractional order
transfer function transfer function

1
| ST9987 4 509994 1 |

1 " br=o0.001
sz + s + 1 « =0.99%4

Assume: Second order is
due to the use of two
capacitors
(a)
1
I Add fractional capacitor ‘/. 50:0006 ‘
1 DF = 0,001, ’ 1

s2+s+1

| @ =0.9994/ [ 19987 + 09994 4 1

<

Fig.1. The effect of lossy capacitors on integer order transfer function:
formation of fractional order transfer function (a);
restoring the order of the system using fractional capacitor (b)

(b)

T1(s) is called integer order transfer function because its order is integer, i.e. n = 2. If the
dissipation factor of these capacitors increases to 0.001, then the capacitors become lossy and
their impedance be given as:

1
ZC = W. (3)

Hence, the transfer function of the circuit changes to:

1
TZ (S) = §1.9987 1 50.9994 4 1° (4)

T,(s) is called fractional order transfer function, as the order becomes 1.9987 which is
not an integer. Use of such lossy capacitors can degrade the performance of oscillators. The
performance can be restored by adding fractional capacitors to the circuit. Fig. 1,a shows the
effect of lossy capacitors on integer order circuits, and fig. 1,b demonstrates an example where a
fractional capacitor of order 0.0006 is added to restore the order of the circuit. It is necessary to
restore the order of the oscillator because, as the order of the circuit reduces, the sensitivity of the
oscillator as a signal conditioning circuit reduces. Therefore, when lossy capacitive sensors are to
be used, a fractional oscillator is an apt choice for the signal conditioning circuit.

Section Il describes the proposed fractional order oscillator.

1. Fractional oscillator

The proposed signal conditioning circuit is a new type of fractional oscillator [4-11],
whose diagram is shown in fig.2.
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Fig.2. Proposed fractional oscillator circuit

In this section we discuss the operation of the proposed circuit as an oscillator and in the
next section its working as a signal conditioning circuit will be explained. The circuit has two
lossy capacitors Z, and Zg . In fig. 2 simple model of lossy capacitors are given. The actual
lossy capacitors can have complex models

. 1 1
The impedance Z, = e . We will
RyCyS+1 F1 RyCys+1 Fz

use the fractional order models to derive the Barkhausen criteria for the oscillation. The circuit
has four op-amps of which A; and A, are the parts of gain network A(s). The other two op-amps
A5 and A, are the parts of the feedback network B(s).

The gain, A(s), of the oscillator is given as A(s) = — (1 + i) (R — ) The output of the

oscillator, VO, is positively feedback to Al through the network B(s). The transfer function of
the feedback network is given as:

. And the impedance Zz =

B(s) == (4 —>~1 ), 5)

D Gl GzR2F2R3C3S(1+B)

where G, = 1+ ” and G, = 1+R R . Once the gain and feedback network of the
Ra c a h

oscillator are identified, the Barkhausen criteria, A(s)B(s) = 1, can be used to derive the

oscillating frequency. To simplify the algebric expression, let us consider G = (1 + %) Gi1 = Gi
1

and G,, = Gi . Then the Barkhausen criteria is:
2

A(s)B(s) =1, ©)
-G (1 1
F1Rys% (G_1 + GZR2F2R3635(1+B)) =1, 7
G11 Gi2 _
FiRys® * F1R1C3RyR3C3s(1+B) 1, (8)
strath) f S gep) 4 G2 ¢ ©)
FiRy FiR1F;R;R3C3

The characteristic equation of the oscillator (9) can be expanded into its real and imaginary parts
which can further be equated to zero. Let the imaginary part is equal to zero at a frequency w1,
then we get:
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1

cos(Z2 a
w1 = < - (2()114,—3))> ) (10)

GlRlFl COS(”

=G = G1R1Fiw,® C:;(n(‘“z'_m)
cos(—)

2

(11)

Similarly, let the real part be zero at a frequency w». Expanding and equating the real part
of (9) to zero at w2, we get:

B
a)2=< Gcos(z)

GzR1F1R2R3F263 sin

1

>(1+a+ﬁ)
. . (12)
=)

When both the real and imaginary parts of (9) are zero, w; = w,, and the circuit oscillates.

2. Fractional oscillator as a signal conditioning circuit
for wide range lossy capacitive sensor

In this section, with the help of Example 1, we show the design of the oscillator as a
signal conditioning circuit for a lossy capacitive sensor having a wide capacitance (C,) range of
10 pF to 1000 pF. The value of leakage resistance is 1 k€Q.

Example 1: Design a fractional oscillator based signal conditioning circuit to detect the
capacitance of a lossy capacitive sensor having Ry =1 kQ. The capacitance (Cy) range is 10 pF to
1000 pF.

Solution: Initially an oscillator need be designed using the given values of sensor
parameters. Next, we make some modifications in the designed oscillator to make it work as a
signal conditioning circuit.

Initial oscillator design: Initially, we have to choose a suitable oscillating frequency as
well as a suitable value of o and 5. Let us choose Z; as the sensor as shown in fig. 3.

Fig. 3. Circuit diagram of the fractional oscillator using Zg as sensor

Since, the capacitance (Cy) of the sensor, Zg, varies, its corresponding order i.e f and
fractance F» also vary. We need to find the minimum and maximum possible value of g of the
sensor. We require the minimum value to calculate the required value of o for the impedance Za.
The minimum value of Cy is 10 pF. Table 1 shows the minimum value of g at different
frequencies which is near to zero. The value of « and f should be chosen in such a way that (a +
p) > 1. The values of £ at 1 kHz and 10 kHz are extremely small, using which the circuit cannot
be designed practically. We choose the minimum value of g = 0.012. Therefore, the required
value of a willbe a=1-p~1.
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Table 1. Minimum value of 4 corresponding to Cy values

f, (H2) 1k 10k 100 k
Cx (pF) 10 10 10

Ry (K Q) 1k 1K 1K
Brin 4%x1075 | 4x10°° | 4x 1075

The impedance Zo having « = 1 is a simple capacitor. It is to be noted that, if we had
chosen Za as the sensor, then we would have obtained g = 1 to fulfill the condition (a+p) > 1.
But choosing £ =1 is a bad idea. Observing eq. (11), we find that # = 1 will produces a very gain

G because its denominator will be cos (g) = 0. Practically getting such a high gain is not

possible. As the circuit is designed at a high frequency, a high gain will affect the output. Once
the oscillating frequency is chosen, the maximum value of £ can be calculated using maximum
value of Cy. It is calculated to be fmax = 0.375. Therefore, the value of j varies between 0.012 to
0.375 whenever the sensor capacitance (Cy) varies between 10 pF to 1000 pF.

Stability: Initially we design the oscillator for o = 1, B = 0.357 (corresponding to Cy
=1000 pF) and fo, = 100 kHz. Following the design steps, different circuit components are chosen
asRI=30kQ, R2=1kQ, K=10kQ, Ra=1kQ, Rb=3067 Q, Rc =2 kQ, and C3 = 10 nF.
Using these values, the design variables R and R3 are calculated to be R = 653 kQ and R3 = 109
Q. The stability of the oscillator circuit in this example can be found out by analyzing the
characteristic equation (9) in W plane (the stability of fractional order circuits are generally
analyzed in W plane [12] instead s plane). In the s plane the characteristic equation
(corresponding to Cy = 1000 pF) of the designed oscillator is given as:

D(s) = s1*1*0375 4 3.94 x 10551375 + 5.47 x 103 . (13)
The above expression can be written as:
(1000+1000+375) (1000+375)
D(s) =s\" 100 ) 43.94 x 10%s\" 1000 /) 4 5.47 x 103 | (14)
1
Let = sm , m = 1000, then the above equation becomes:
D(W) — W(1000+1000+375) +3.94 % 10551000+375 + 547 % 1013 ] (15)

Equation (15) has 2357 roots in W plane. The system will be stable if all the roots of (15)
have 2W >|%| radian. The system will be oscillatory if one pair of the roots will have 2W =

|%| And the system will be unstable if any root have 2W < |%| Solving (15) in Matlab we

found that a pair of roots have £W = +0.09° (m = 1000, so % = 0.0016 radian which is 0.09° );
while all other roots have £W > |0.09]°.

Therefore, the circuit, as expected, will oscillate for Cy = 1000 pF and the oscillating
frequency (fosc) [12] is given as:

s=wm (16)

£, =20 = 100 kHz.

- (17)
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Now, if Cy decreases to 10 pF, then # = 0.004 and F, = 2.48 nUs%9%4,
The new characteristic equation becomes:

D(W) = W(1000+1000+4) 4 3,94 x 105510004 4 547 x 103, (18)

Solving (18) in Matlab it was found that a pair of roots have W = +0.0911°, which
makes the circuit stable and non-oscillatory. In order to restart the oscillation for Cy = 10 pF, we
need to make w1 = w». This can be done by tuning Rc. The value of Rc which will restart the
oscillations can be found out using the Algorithm 1.

Algorithm 1. How to calculate the value of Rc for which
the oscillator will have sustained oscillations for the full range of
CP

Start: number of iteration, N ; € = 1, r = 5; iteration counter, I;
TempRc[1] =Rc

While N do

+ R
R;||TempRc(i)

G cos (%) “

G1R,F; cos (n M)

1
G cos (%) (1+a+f)

G () =1

[uy

w1 (i) =

wosc(i) =
G,R,F,R,RF,Cs sin (n w>

D(i)=wosc(i) - w1(i)
If D(i) <e Rc < TempRc and stop
Else TempRc(i + 1) = TempRc(i) —r
End

Using Algorithm 1, the value of Rc which makes the system oscillatory is 12 Q. Fig. 4
shows the plot of £W for different values of C y when Rc =12 Q, Rc =1 kQ and Rc =2 kQ.

-0.075"

-0.08° unstable —R_=120
y oscillato —R_=1k0
= -0.085
V -
009 & e - e - - -
-0.095 stable

non-oscillatory

0.1
0 200 400 600 800 1000

(o
X
Fig. 4. Rc can be used for sustained oscillations for different ranges of Cy

It is apparent from fig. 4 that, the circuit will be in unstable state irrespective of the value
of Cy, when Rc = 12 Q. However, as the value of Rc increases, the circuit instability region
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decreases. For example, when Rc = 1 kQ, the circuit is unstable for C y = 560 pF to 1000 pF. But
for the range Cy = 10 pF to 560 pF, the circuit is stable and non-oscillatory because £W > 0.09°.

The result of the above example can be concluded as, “adjusting the value of Rc = 12 Q
leads to sustained oscillations for the given range of sensor capacitance”.

3. A new theory for stability for the proposed oscillator

Determining the stability of the oscillator using the conventional method is a complex
process as it involves numerical computation of large number of roots. In Example 1, the
number of roots are 2357 which takes some amount of time to compute using Matlab. Further we

need search roots having £W = |% | radian. This again takes some time.

In this part a new theory has been proposed which simplifies the process of determining
the stability of the oscillator. The proposed stability theory is not a general theory rather it is
applicable only to the oscillators having a characteristics equation in the following format.

D(s) = sU+a+h) 4 q, s1HF 4 g, (19)

Theory: The proposed oscillator is:
1) stable and non-oscillatory if w1 > w?2.
2) stable and oscillatory if w1 = w2.
3) unstable but oscillatory if w; < w,
dRe{D(s)} _

4) The oscillating frequency can be obtained by solving -

In this part no mathematical proof has been given. This theory has been established by
several verifications that has been performed using MATLAB simulations.

Example 2 demonstrates the simplicity with which the stability of the oscillator can be
determined.

Example 2: Find the stability of the oscillator realized in Example 1 using the proposed
theory.

Solution: The values of w1 and w2 can be calculated using (11) and (12) respectively.
Utilizing the component values given in Example 1, we find w1 = w2 = 22x100 Mrad/s.
Therefore, the system is stable and the oscillating frequency is given by wosc = 100 Mrad/s. The
results are identical to Example 1. Table 2 compares the results of the two methods.

Table 2. Comparison of conventional and proposed method
of stability (f1 =22, f2 = 22))

1
2m’ 21

Conventional Proposed Is Stable/
Method Method Oscillates ?
W fosc fl (kH f2 (k
R@) 1y |kbp |2 | H)
1000 0.085 | 124 | 785 121 | No/Yes
1500 0.088 | 110 |91.6 108 | No/Yes
2000 0.090 | 100 | 100 100 | Yes/Yes
2500 0.092 | 92 105 |93 Yes/No
3000 0.093 | 85.6 | 110 87 Yes/No
1000 0.085 | 124 | 785 121 | No/Yes

The stability of the circuit changes if Rc is varied. So, in Table 2 we set Rc to different
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values and check the stability using the two methods.

In the column ‘conventional method’, the value of £W has been computed for different
values of Rc. Also the oscillating frequency is calculated using (17). In the column ‘proposed
method’, w1 and w2 has been calculated. It can be observed from the table that whenever, w; <
w,, £W < - which ensures instability. Also if w1 > w2, 2ZW > Zwhich ensures stability.
Therefore, Table Il validates the proposed theory.

The position of w1 can be visualized by plotting Im{D(s)} with respect to w. Similarly the

position of w,s.can be visualised by plotting Re{D(s)} with respect to w. Fig. 5 shows the plot of
Im{D(s)} and Re{D(s)} for the values of Rc given in Table 2.
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Fig. 5. Plot of Im{D(s)} and Re{D(s)} for different values of Rc

The original value of Rc = 2000 Q. It can be observed from these figures that as the value
of Rc decreases, the system becomes unstable but oscillatory. As the value of Rc increases, the
system becomes stable but non-oscillatory.

4. Design of the oscillator at high frequency

The main advantage of using fractional oscillator as a signal conditioning circuit is that it
can detect low leakage resistance (1 kQ) lossy capacitor. But in order to detect low leakage
resistance, the circuit is to be operated at high frequency. At high frequency the limited gain and
gain-bandwidth product start to dominate the frequency response of the circuit. Let Ga1, Gaz, Gas

and Gag4 be the gain of the op-amps A, A2, Az and Ay at high frequency (1> 100 kHz) respectively.
The expression of these gains can be given as:
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G
GAl = a)tfés ! (20)
Gy
Gaz = WG")(‘% : (21)
— Gy
Gp3 = 1+(1+Gy)wit , (22)
Gs
Gpa = WGS)(‘% : (23)
Rx Ry
Where wt, is the gain-bandwidth product of op-amps; G, = - ;15+1 and G, = - (fls+1 .
xbx vy

For LF411 op-amps wt = 6z Mrad/s; Using this expression, the loop transfer function of the
oscillator is given as:

T(s) = AB, + 1, (24)

1 G
where, Ay = Ga1 Gy, and By = —+ G—‘“ .
1 A4

Due to the extra pole introduction, the design equations of the oscillator as given in (11)
and (12) may not provide desired results. Therefore, we need to choose the component values in
such a way that generated sine waves are accurate as well as of high quality. In the following an
Example 3 is given to demonstrate the design problem.

Example 3: A sensor has a leakage resistance of 1 kQ; its capacitance can vary from
1000 pF to 10 pF. Design an oscillator at 100 kHz to sense the change in capacitance. Discuss
the effect of changing the resistor Rb on the frequency response of the oscillator.

Solution: The impedance of the senor with the nominal value of capacitance is given as
Zp =1kQJ|10 pF. At 100 kHz, f is calculated to be g = 2 Zf -90° = 0.004. To make a + f = 1,
let us choose a = 1 and C1 = 1 nF. The other components are chosen to be R1 =300 Q, R2 =1
kQ, K=10kQ, Ra=1 Qk, Q, Rc =2 kQ and C3 = 100 nF.

Fig. 6 shows the bode plot of (24) for different values of Rb.

40
~——R_b=100
30 R_b=300
R_b=700 {}
20 —=R_b=1 k2
.Rb=5 k(2

10 R _b=10 k} |

Magnitude (dB)

10° 107
Frequency (Hz)

Fig. 6. The frequency response of the oscillator at high frequency for different values of Rb

Table 3 shows comparison of the ideal and non-ideal values of oscillating frequency.
Here non-ideal means the oscillating frequency as derived from (24) for different values of Rb.

The following points can be observed from Fig. 6 and Table IlI:

1. For smaller values of Rb, there is a sharp trough in the magnitude response of eq. (24),
which shows high quality factor. This shows that the sine wave generated for these values of Rb
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will have low THD (Total harmonic distortion).

Table 3. Effect of the resistor Rb on oscillating frequency

Rb (kQ) Oscillating frequency Error=
f1-f2
Ideal non- (kHz)
ideal(f2)
(f1) (kHz) (kH2)
0.1 540 311 229
0.3 328 265 63
0.7 258 230 28
1 240 217 23
5 201 167 34
10 200 143 57

2. However, for smaller value of Rb, as observed from Table Il, the error is large. This
shows that for smaller values of Rb, the accuracy of the circuit is less.

3. For larger values of Rb, the magnitude response flattens showing low quality factors.

4. However, for larger values of Rb (5 kQ or 10 kQ), the error is large.

From sensing point of view, what we can conclude that we need to select Rb values in the
mid range such that it will maintain both accuracy as well as quality factor

Conclusion

In this work a new theory of stability for fractional oscillator has been proposed. It is
easier to establish the stability of the oscillator using the proposed theory as compared to the
conventional theory. But the main disadvantage of the proposed theory is that it is applicable to
only a section of oscillators which has a format as discussed in this work. In addition to the
stability, the frequency response of the oscillator is also discussed. The fractional oscillator is
shown to be useful to detect low leakage resistance lossy capacitors. But to detect low leakage
resistance, the circuit has to be operated at a high frequencies (100 kHz). At such high
frequencies, the limited gain and gain -bandwidth product of the op-amps come into effect. It is
shown that while designing the circuit, the components should be chosen wisely.
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PA3ZPABOTKA CXEMbI TPOBHOI'O 'EHEPATOPA
JJIA PASJIMYEHUSA XAPAKTEPUCTUK KOHAEHCATOPOB
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AHHOTa[Il/lfl. B 3T0ﬁ CTaThe I/ICCHC}IyeTCﬂ HOBasA KOHLICIIITUA MOHGHHpOBaHI/IS{ CEMKOCTHBIX JATYHUKOB C
HOTepHMI/I B BUIC JIpO6HI)IX KOH}ICHcaTOpOB nu HpI/IMeHeHI/IH )1p06HBIX FeHepaTOPOB B KAaYCCTBC CXEM
(hopMHUpOBaHMS CHUTHAJOB JUISI TOBBIIICHHWS KadecTBa pa3IHUEHHUS HX XapaKTepHUCTHK. JpoOHbIi
reHepaTop 06na11aeT HECKOJIbBKUMHU SIBHBIMHU HpeI/IMyH_[eCTBaMI/I, B YaCTHOCTH, 06Hapy)KeHI/IeM
HII/IpOKOFO ararasoHa 3HanHHI>'I COl'IpOTI/IBJ'IeHI/Iﬂ yTquI/I N CEMKOCTH, a TaKX€ BO3MOXHOCTBIO
OIIPENeNIATh MECTOIOJIOKEHUE [aTdyhKa BHYTpU Ienu. s pemeHus mpoOiieMbl OOHAPYXKEHUS C
HU3KUM COIPOTUBJICHHEM YTEUKH T€HEpaTop clpoekThpoBaH Ha yacToTy 100 kI ¢ yyeToM Bcex
HEUJCANbHOCTEH, TAaKMX KaK OrpaHWYEHHbIE YCHJIEHHWE W MPOU3BEACHHE YCUJIEHHS Ha I0JIOCY
nponyckanus. OOcykaaeTcss YHOpoINeHHAs TEOpHs aHaln3a CTaOMIBLHOCTH T€HEparopa, B paMKax
KOTOPOH CTa0WIBHOCTh OIpPEICIACTCS IyTeM CPaBHEHUS 4YacTOThI KoJcOaHWA C €€ MHHUMOU
COCTAaBJISAIONICH.

KaroueBble ciioBa: KOHIEHCATOp JPOOHOTO MOpPsKA, TEHEpPaTop JApoOHOro TMOpsaKa, cXxema
(hopMHpOBaHUs CHUTHAlIA, EMKOCTHBIC MATYUKU C IOTEPSMH, TEOPHUs Ul aHAIW3a YCTOHYHUBOCTH
TeHEPATOPOB.
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