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Abstract: This article is written to commemorate the 100th anniversary of the birth of Rashid 

Shakirovich Nigmatullin. He first realized the fractal element performing the differentiation and 

integration operation of the half-order in electrochemistry in the early 1960s. In recent years, as the 

theory and application of fractional calculus has become a hot topic in many fields, the circuit modeling 

and mathematical modeling of complex fractional order phenomena and processes, as well as the 

physical realization and practical applications of fractional order circuits and systems are particularly 

important and urgent. Designing and constructing fractance approximation circuits (FACs) are an 

effective technique to realize fractional operators and fractional elements. In this article, we will 

introduce and discuss the research and development of FACs. The main contents are: 1) some pioneers 

in the research of FACs; 2) basic concepts of fractional-order circuit elements and FACs;3) Oldham 

fractal chain circuits and their mathematical descriptions, some classical half-order fractal FACS;     

4) mathematical basis of the frequency-domain analysis—frequency-domain characteristics and 

operational characteristics; 5) Liu-Kaplan fractal chain circuits and their mathematical descriptions;    

6) scaling extension theory and irregular scaling equations. 
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circuits, operational characteristics, analogical circuit modeling, mathematical rational approximation, 

scaling extension, irregular scaling equations. 

1. “Fractional Calculus” Theory and Application：Pioneers-Heroes Timing List① 

This is a historical course map (Fig.1.1) that I started making around 2011. At that time, I 

was writing a monograph, “Mathematical Principles of Fractance Approximation Circuits” [1], 

which involved the collection of historical documents related to the theory and applications of 

fractional calculus, and the need to organize and briefly summarize the research and development 

history of these fields. 

In this course of historical development, the brave pioneers are the most important. The 

efforts and contributions of the pioneers are worth remembering and honoring. Therefore, I later 

named this course map as “‘Fractional Calculus’ Theory and Applications: Pioneers-Heroes 

Timing List’’, and it was published in the “Annotated translation preface” of my annotated 

translation book “Fractional Calculus: Theoretical Fundamentals and Introduction to 

Applications” [2]. This book is translated from Igor Podlubny’s “Fractional Differential 

Equations” [3]. 

In this historical course map, Rashid Shakirovich Nigmatullin has a clear place. His 

outstanding contributions and achievements in many aspects, especially the discovery and 

realization of half-order fractal elements in electrochemistry [4-11], have established his solid 

position in the development and application of fractional calculus. 

This is also an evolutionary map, that I have had to show many times every year in my 

classroom teaching to the graduate students of related majors, in the College of Electronics and 

                                                        
① In this section personal pronoun (I) coincides with the name of the leading author Yuan Xiao. 
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Information Engineering of Sichuan University (in Chengdu, China) and the College of 

Information Science and Technology of Tibet University (in Lhasa, China) for more than ten years. 

 

 

 

Fig. 1. “Fractional Calculus” Theory and Applications: Pioneers-Heroes Timing List 

I often tell my students that in their study and scientific research, they should learn from 

these brave pioneers, and have the courage to discover, to open up, to explore, and to innovate. It 

is possible for researchers in any discipline to embark on the path of fractional-order and achieve 

results. In particular, I will certainly mention the discoveries and contributions in the fractional-

order field, which were made by not-math-major-born researchers, such as Keith B. Oldham, 

Rashid Shakirovich Nigmatullin, and others. Tell the stories of these pioneers, inspire students’ 

enthusiasm, enlighten students’ minds. So I also tell my students: All roads lead to fractional-

order! 
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2. Fractional-order circuit elements and fractance  

approximation circuits: basic concepts 

2.1. Fractional-order circuit elements: Circuit symbols and their mathematical 

representations 

 Fractional-order element 

Fractional-order circuit element (→FOE), or simply fractional element, is a class of circuit 

elements or devices with fractional order differintegration capability (also known as operational 

capability). That is, these devices are two-terminal devices with fractional-order impedance     

(or admittance), and multi-terminal devices with fractional-order transfer functions          

(i.e., fractional-order system functions). 

Fractional-order impedance or admittance → Fractional-order immittance →     

Fractance [12]. 

The simplest fractional element is the passive two-terminal fractional element, which we 

call fractor. Fractor is a passive two-terminal fractional element with fractional-order immittance. 

 Ideal fractor and non-ideal fractor 
The input impedance function of an ideal μ-order fractor is a fractance function, which is 

defined by 

𝑍(𝜇)(𝑠) =
𝑉(𝑠)

𝐼(𝑠)
= 𝐼(𝜇)(𝑠) = 𝐹(𝜇)𝑠𝜇,                                           (1) 

where 𝜇 is the operational order (0 < |𝜇| < 1, 𝜇 ∈ ℝ), 𝑠 = 𝜎 + j𝛺 is the operational variable 

(also called complex frequency variable, or Laplacian variable), 𝐹(𝜇) is the lumped parameter of 

the element which is called fractance quantity, referred to as fractance. 

For an ideal fractor, 𝐹(𝜇) is a constant independent of the operational variable. We use the 

circuit symbol shown in fig. 2(a) to represent the ideal fractor [1, 2]. The circuit symbol and its 

definition for the non-ideal fractor is shown in fig. 2(b). 

   
Circuit symbol    Lumped parameter 𝐹(𝜇), 0 < |𝜇| < 1 ←Fractance 

 (a) Ideal fractor: circuit symbol and its definition, SI dimension and SI unit 

 

(b) Non-ideal fractor: circuit symbol and its definition 

Fig. 2. Fractors: circuit symbols, the input impedance functions 

 Inductive fractor and capacitive fractor  

A fractor which the operational order 𝜇 in the open interval (−1, 0) is called a capacitive 

fractor, and is often called a fractional capacitor. And in contrast to this, is the inductive fractor, 

𝜇 ∈ (0, 1). 

Up to now, both ideal fractors and wideband non-ideal fractors are almost unavailable 

devices. 

𝐹(𝜇) 
+

𝑣(𝑡)
−
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  SI dimension: ML2T−3+𝜇I−2
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Non-ideal 𝜇 -order fractance function 

𝐼 (𝜇)(𝑠) is an irrational function that contains or 

approximately contains fractional operator with 
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Therefore, a very natural idea is to use easily available integer-order elements, such as 

resistors, capacitors, inductors, and active devices, and so on, to build a finite size two-terminal 

circuit network in a certain frequency band to approximate the operational function of an ideal 

fractor. We call this a fractance approximation circuit, abbreviated as FAC [1, 2]. 

2.2. Some pioneers in the research of Fractance Approximation Circuits 

In Fractance Approximation Circuit (→FAC) field, the following researchers have made 

pioneering contributions, which deserve our memory and highly esteem. They are 

1920s  Oliver Heaviside: Discovered the −1/2 order RC distribution cable; 

1959   R.Morrison: Scaling fractal ladder, fractal chain, and two fractal chain circuits [13]; 

1960s  R Sh Nigmatullin: “recond” and “reind”, physically fabricated FOE [4-11]; 

1960s  G.E.Carlson: Carlson fractal lattice circuit, Carlson regular iterating approximation [14,15]; 

1960s  S.C.Dutta Roy: Distributed & lumped realizations, Circuit modeling by CFE and PFE [16,17]; 

1970s  K.B.Oldham: Semiintegral electroanalysis, half-order fractal chain circuit [18]; 

1985   S.H.Liu, T.Kaplan: Liu fractal tree [19], Liu-Kaplan fractal chain circuit [20-21]; 

1992   M.Nakagawa, K.Sorimachi: N-S fractal tree circuit [22]; 

1997   C.Haba et al: Haba’s MOS fractal capacitors [23-25] 

…… 

2.3. Fractance Approximation Circuits (FACs): Mathematical Descriptions 

Figure 3 shows the relationship between the FACs and the fractors, and its approximation 

process. This one-port passive (or active) circuit network with finite size 𝑘 ∈ ℕ  is called a 

Fractance Approximation Circuit (FAC), which approximates to the ideal fractor in a certain 

frequency range and under a given approximation precision. 

 

  Fig. 3. Fractance approximation Circuit and fractors—Mathematical principle of the FACs 

In mathematical terms, a sequence of rational impedance functions {𝑍𝑘(𝑠)}𝑘∈ℕ  is 

constructed to converge to the limit impedance function 𝑍(𝑠). This limit impedance function is 

equaled to the irrational function 𝐼(𝜇)(𝑠) of an ideal fractor directly or under some additional 

conditions (such as in the low or high frequency range), namely, 

 

 𝑍𝑘(𝑠) =
𝑁𝑘(𝑠)

𝐷𝑘(𝑠)
=

∑ 𝑏𝑘,𝑖𝑠
𝑖𝑛𝑘

𝑖=0
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   𝑘→∞   
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Rational
limiting

𝑍(𝑠)
 Additional 
→        
Conditions

𝐼(𝜇) (𝑠) = 𝐹(𝜇)𝑠𝜇,         (2) 

 

where 𝑘 is the number of FAC size or of iterations of an approximation algorithm, is also the 

complexity of a FAC whose value is natural number：𝑘 ∈ ℕ, 𝑛𝑘 and 𝑑𝑘 are the highest degrees 

of the numerator and denominator polynomials, 𝑁𝑘(𝑠) and 𝐷𝑘(𝑠) respectively. 
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 2.4. Basic mathematical properties of the impedance function sequences 

The input impedance function sequence of a FAC and the rational approximation sequence 

of a fractional operator, {𝑍𝑘(𝑠)}𝑘∈ℕ, must satisfy the following basic mathematical properties   

[1, 2]. 

1) Computational Rationality 

For the operational variable (that is, the independent variable) 𝑠 in the impedance function 

𝑍𝑘(𝑠), there can only be addition, subtraction, multiplication, division of four rational operations, 

there should be no irrational operations. This is because it is necessary to avoid constructing new 

fractance approximation circuits by use of fractors. 

2) Positive Reality Principle 
This is a necessary condition for a causally stable system. That is, the basic requirements 

of physical realization. Specifically, all its zeros and poles should be located in the left half plane 

of the complex plane s. 

3) Operational Validity—Convergence and Limit Impedance Function 

The rational function sequence converges and has 

  lim
𝑘→∞

𝑍𝑘(𝑠) =𝑍(𝑠)≈ 𝐼(𝜇) (𝑠) = 𝐹(𝜇)𝑠𝜇   0 < |𝜇| < 1 .                              (3) 

The limit impedance function 𝑍(𝑠) must have fractional-order operational performance 

at least in a certain frequency range (or band). Therefore, the limit impedance or admittance 

function must be an irrational function that contains or approximately contains fractional operator 

with order μ (i.e., 𝑠𝜇). 

The operational validity is the core problem of the fractance approximation circuit! 

Mathematically, the operational validity is supported by convergence and limit immittance. 

 Ideal approximation and non-ideal approximation 

An approximation where the limit impedance function 𝑍(𝑠)  is equaled to the ideal 

fractance function 𝐼(𝜇)(𝑠), is called an ideal approximation. That is 𝑍(𝑠) = 𝐼(𝜇)(𝑠). 

An approximation that requires additional conditions（such as in high or low frequency 

range) to make the above equation true or approximately equal, are called a non-ideal 

approximations. That is 𝑍(𝑠) ≈ 𝐼(𝜇)(𝑠). 
 Strong approximation and weak approximation 

 𝑍𝑘(𝑠) =
𝑁𝑘(𝑠)

𝐷𝑘(𝑠)
= 𝜅

∑ (𝑠 − 𝑧𝑖)
𝑛𝑘−1
𝑖=0

∑ (𝑠 − 𝑝𝑗)
𝑑𝑘−1
𝑖=0

, 𝑘 ∈ ℕ+                                   (4) 

If all zeros 𝑧𝑖  and poles 𝑝𝑗  of the rational approximation function 𝑍𝑘(𝑠), lie on the 

negative real axis of the operational complex plane s, 𝑧𝑖 ∈ ℝ−, 𝑖 = 0~𝑛𝑘 − 1 , 𝑝𝑗 ∈ ℝ−, 𝑗 =

0~𝑑𝑘 − 1, then this approximation is called a strong approximation, otherwise Re𝑧𝑖 ∈ ℝ−, 𝑖 =
0~𝑛𝑘 − 1 , Re𝑝𝑗 ∈ ℝ−, 𝑗 = 0~𝑑𝑘 − 1 , the rational approximation is called a weak 

approximation. 

2.5. Passive integer-order elements and fractional-order elements: circuit symbols 

and Mathematical descriptions 

Circuit symbols and their mathematical descriptions of some of the passive integer-order 

and fractional-order circuit elements are listed in Table 1. 
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Table 1. Integer-order elements and fractional-order elements: 

Circuit symbols and mathematical descriptions 

 

Element 

name 

Circuit 

symbol 

Lumped 

parameter 

Impedance 

function 𝑍(𝑠) 
Operational 

order 𝜇 

Element 

Classification 
Remark 

Ideal two 

terminals 

element  

𝑍(𝑠) =
𝑉(𝑠)

𝐼(𝑠)
 

𝛬(𝜛) = lg|𝑍(j ∙ 10𝜛)| 
𝛩(𝜛) = arg{𝑍(j ∙ 10𝜛)} 

𝛭(𝜛) =
d𝛬(𝜛)

d𝜛
 

j = √−1 

𝛬(𝜛): 
Amplitude-frequency 

characteristics, or 

magnitude-frequency 

characteristics 

𝛩(𝜛): 
Phase-frequency 

characteristics 

𝛭(𝜛): 
Order-frequency 

characteristics 

 

Four fundamental 

circuit variables： 

Voltage 𝑣 

Current 𝑖 
Charge 𝑞 

Magnetic-flux 𝜑 

（flux-linkage） 

Ideal 

Inductor 
 

Inductance 

𝐿 

d𝜑 = 𝐿d𝑖 

𝑍𝐿(𝑠) = 𝐿𝑠 

𝐹(+1) = 𝐿 
𝜇 = +1 

Integer- 

order 

element 

Ideal 

Resistor 
 

Resistance 

𝑅 

d𝑣 = 𝑅d𝑖 

𝑍𝐿(𝑠) = 𝑅 

= 𝑅𝑠0 

𝐹(0) = 𝑅 

𝜇 = 0 

Ideal 

Capacitor 
 

Capacitance 

𝐶 

d𝑞 = 𝐶d𝑣 

𝑍𝐶(𝑠) =
1

𝐶𝑠
 

𝐹(−1) = 𝐶−1 

𝜇 = −1 

Memristor 

[26-28] 
 

Memristance 

𝑀 

𝜑 = 𝑀d𝑞 

?? ?? 

Ideal 

Transtor 

[29, 30]  

Transtance 

𝑇 

𝜑 = 𝑇d𝑞 

?? ?? 

Ideal 

μ-order 

fractor[1]  

Ideal 

Fractance 

𝐹(𝜇) 

𝑍(𝜇)(𝑠) = 𝐹(𝜇)𝑠𝜇 

𝐼(𝜇)(𝑠) = 𝐹(𝜇)𝑠𝜇 

0 < |𝜇| < 1 
Fractional- 

order 

element 

SI unit:  𝐹(𝜇) = Ωs𝜇 

SI dimension: Dim𝐹(𝜇) 

= ML2T−3+𝜇I−2 

0 < 𝜇 < 1: 

Inductive fractors 

−1 < 𝜇 < 0: 

Capacitive fractors 

Nonideal 

μ-order 

fractor  

Nonideal 

Fractance 

𝐹  ? 

𝐼 (𝜇)(𝑠) ≈ 𝐼(𝜇)(𝑠) 
Additional 

condition 

Variable- 

order 

fractor[31]  

?? ?? ??  

Frac- 

memristor 

[32-34]  

?? ?? ??   

Notes 
Basic circuit variables: 

𝑣, 𝑖, 𝑞, 𝜑. 

Operational variable: 𝑠 = 𝜎 + j𝛺 

Frequency exponent: 𝜛 = lg𝛺 ⟺𝛺 = 10𝜛 

3. Oldham fractal chain circuits and their mathematical description 

Oldham K. B. and Spanier J., in their famous book “Fractional Calculus” [17], proposed 

and studied a Fractance Approximation Circuit with negative half-order operational performance 

in a low-frequency range. In order to express our deep respect for Oldham’s pioneering research 

work in the development and application of fractional calculus, we call such circuit Oldham type 

I fractal chain circuit, or simply Oldham fractal chain circuit. 

 

 

+
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−
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3.1. Prototype circuit and iterating circuit 

The original circuit first proposed by Oldham et al is shown in fig. 4(a). Obviously, we can 

equivalently simplify this circuit to the iterating form shown in fig. 4(b), and call it an iterating 

circuit. 

 

(a) Prototype circuit                         (b) Iterating circuit 

Fig. 4. Oldham type I fractal chain circuit 

3.2. Iterating algorithm and iterating function—Mathematization of the problem 

Given any physically realizable rational initial impedance 𝑍0(𝑠) = 𝑁0(𝑠)/𝐷0(𝑠) , the 

input impedance function sequence {𝑍𝑘(𝑠)}𝑘∈ℕ of Oldham type I fractal chain circuit, can be 

found from the iterating algorithm formula: 

𝑍0(𝑠) =
𝑁0(𝑠)

𝐷0(𝑠)

     
→ 𝑍𝑘(𝑠) = 𝐹O(𝑍𝑘−1(𝑠)), 𝑘 ∈ ℕ+.                            (5) 

Where 𝐹O(𝑥) = 𝑅 +
1

𝐶𝑠+1/𝑥
 is a simple algebraic iterating function that is completely determined 

by the Oldham type I fractal chain circuit. Conversely, the iterating function 𝐹O(𝑥)  also 

mathematically fully characterizes its corresponding circuit entity. In this way, by investigating the 

function 𝐹O(𝑥), it is easy to mathematically uncover the hidden secrets of the circuit. So we have 

turned analogically a circuit problem into a mathematical problem. 

Does this impedance function sequence {𝑍𝑘(𝑠)}𝑘∈ℕ converge? 

To answer this question, we mathematize the problem. Take 𝑎 = 𝑅 , 𝑏 = 1/(𝐶𝑠) , 

𝑥𝑘 = 𝑍𝑘(𝑠), and assume they are all positive real numbers, then 

𝑥0 ∈ ℝ+
    
→ 𝑥𝑘 = 𝑎 +

1

1
𝑏
+

1
𝑥𝑘−1

= 𝐹O(𝑥𝑘−1),  
𝑎 ∈ ℝ+, 𝑏 ∈ ℝ+

𝑥𝑘 ∈ ℝ+   , 𝑘 ∈ ℕ+.        (6) 

If the positive real numerical sequence {𝑥𝑘}𝑘∈ℕconverges, then the impedance function 

sequence {𝑍𝑘(𝑠)}𝑘∈ℕ also converges! Because the iterating function of both is the same function 

𝐹O(𝑥) = 𝑎 +
1

1
𝑏
+
1
𝑥

 ,  𝑎 ∈ ℝ+, 𝑏 ∈ ℝ+, 𝑥 ∈ ℝ+

Electrical constraint: 𝑎 ≠ 𝑏
 . 

3.3. Iterating plane and Convergence: iterating equation and limiting impedance 

function 

Based on iterating formula (6), the iterating planar graph is drawn, as shown in fig. 5.  

So, we can also use plane geometry to study a circuit problem very intuitively. In particular, the 

problem of convergence. Because 

d𝐹O(𝑥)

d𝑥
=  

𝑏

𝑏 + 𝑥
 
2

< 1,  
𝑥 ∈ ℝ+

𝑎 ∈ ℝ+, 𝑏 ∈ ℝ+ , 

𝑍𝑘(𝑠) ⇒ 𝑘 × 𝑅, 𝑘 × 𝐶 
𝑘 ∈ ℕ+ 

Basic section 

𝑍
0
(𝑠
)  𝑅 

𝐶 

𝑅 

𝐶 

𝑅 

𝐶 

𝑅 

𝐶 

𝑍𝑘−1(𝑠) Initial impedance 

𝑍
𝑘
−
1
(𝑠
) 

1

𝐶𝑠
 

𝑅 

𝑍𝑘(𝑠) 
Equivalent 

 
simplification 

Basic section 
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according to iteration theory, the corresponding numerical iteration process converges to a fixed 

point 𝑟O ∈ ℝ+, that is, 𝑥0 → 𝑥𝑘
   𝑘→∞   
→     𝑟O. The fixed point 𝑟O can be obtained from the simple 

iterating equation                 

𝑥 = 𝐹O(𝑥)                                                                            (7) 

to find 

𝑟O =
𝑎

2
+
𝑎

2
 1 + 4𝑏/𝑎 .                                                         (8a) 

Thus, the limit impedance function of the Oldham typeⅠprototype circuit is 

𝑍O1(𝑠) = lim
𝑘→∞

𝑍𝑘(𝑠) = 𝑟O =
𝑅

2
+
𝑅

2
 1 +

4

𝑅𝐶𝑠
. (                                8b) 

So we also call 𝑟O the prototype fixed point, see Fig. 5. 

 

Fig. 5. Oldham Type I iterating curve and fixed points 

What does this result mean? All already know this. It was this that has opened up a new 

field of research for people in the 1960s. 

3.4. Operational validity and non-ideal approximation 

It has been pointed out above that operational validity is the core problem of the FACs! 

Take𝜏 = 𝑅𝐶 , which is the time constant of the Oldham typeⅠ fractal chain circuit, 

corresponding to the characteristic frequency 𝛺𝜏 = 1/𝜏.  From this, investigating the limit 

impedance 𝑍O(𝑠), there is obviously 

  
𝑅

𝐶
𝑠−

1
2

       0←|𝑠|<𝛺𝜏       
            

Low-frequency range
𝑍O1(𝑠)

       𝛺𝜏<|𝑠|→∞      
→           

High-frequency range
𝑅.                               (9) 

This shows that Oldham type I fractal chain circuit has negative half-order operational 

performance in a low-frequency range, such a circuit is called a low frequency valid negative half-

order fractal FAC. We say that this circuit has Low frequency validity. 

Low frequency validity, in contrast, is high frequency validity. 

Oldham type III circuit (Fig. 6(c) shows its equivalent simplified iteration scheme) is a 

negative half-order high frequency valid FAC. Its limit impedance 𝑍O3(𝑠) is easy to find and has 
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1

𝐶𝑠

     0←|𝑠|<𝛺𝜏    
          

Low frequency range
𝑍O3(𝑠) =

1 + √1 + 4𝑅𝐶𝑠

2𝐶𝑠

     𝛺𝜏<|𝑠|→∞    
→          

High frequency range
 𝑅/𝐶𝑠−1/2 .             (10) 

Here we determine the operational validity by solving the simple iterating equation and 

then investigating the operational performance of the circuit’s limit impedance. 

          

 

    Marked by impedance    Marked by admittance    Marked by impedance   Marked by admittance 

      (a)Type I: LFV          (b) Type II: HFV         (c) Type III: HFV       (d) Type IV: LFV 

Fig. 6. Oldham fractal chain circuit class: Equivalent simplified iterating circuits 

Of course, there are other ways to determine the operational validity of a given fractal 

circuit. 

Recently, we have proposed a “Brief Analysis Method for fractal circuits” [35] which 

directly determines the operational validity (or operational performance) of a given prototype 

fractal circuit based on its topological structure. 

Obviously, according to their limiting impedance, Oldham type Ⅰ and Ⅲ fractal chain 

circuits are non-ideal approximation cases. By solving the zeros and poles of the impedance 

function sequence, it’s also easy to verify that both of them are strong approximation cases. 

3.5. Mathematical simplification of problems: Normalization and its mathematical 

description 

For the iterating algorithm formula (5), through normalization processing, that is, 

𝑍𝑘(𝑠)

𝑅
= 1 +

1

𝑅𝐶𝑠 +
1

𝑍𝑘−1(𝑠) 𝑅 

   Normalizating   
→            

𝜏=𝑅𝐶,𝜏𝑠=𝑤
𝑍𝑘  

𝑤

𝜏
 𝑅 = 1 +

1

𝑅𝐶𝑠 +
1

𝑍𝑘−1  
𝑤
𝜏  𝑅 

,     (11) 

and let 𝜏𝑠 = 𝑤, 𝑍𝑘  
𝑤

𝜏
 𝑅 = 𝑦𝑘(𝑤)(normalized input impedance), we get a normalized iterating 

algorithm 

𝑦0(𝑤) =
𝑁0(𝑤)

𝐷0(𝑤)

     
→𝑦𝑘(𝑤) = 𝐹O1(𝑦𝑘−1(𝑤)),   𝑘 ∈ ℕ+.                        (12a) 

Its normalized iterating function and normalized iterating equation are respectively 

 𝐹O1(𝑥) = 1 +
1

𝑤 + 1/𝑥
 , 𝑥 = 𝐹O1(𝑥) .                                   (12b) 

Its normalized limit impedance 𝑦O1(𝑤) (i.e., the normalized prototype fixed point 𝑟O1) is 

𝑦O1(𝑤) = lim
𝑘→∞

𝑦𝑘(𝑤) =
1

2
+
1

2
 1 + 4/𝑤 = 𝑟O1.                                (13) 

 

𝑍𝑘(𝑠) 1

𝐶𝑆
 

𝑅 

𝑍
𝑘
−
1
(𝑠
) 

𝑌𝑘(𝑠) 

𝑌 𝑘
−
1
(𝑠
) 𝐶𝑠 

1/𝑅 

𝑍𝑘(𝑠) 

𝑍
𝑘
−
1
(𝑠
) 1/𝐶𝑠 

𝑅 

𝑌𝑘(𝑠) 

𝑌 𝑘
−
1
(𝑠
) 

𝐶𝑠 

1/𝑅 
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The normalized operational variable 

 𝑤 = 𝜏𝑠 =
𝜎

𝛺𝜏
+ j

𝛺

𝛺𝜏
= 𝜍 + j𝜔.                                                 (14) 

The advantage of normalization treatment is that it makes the study of real physical 

problems more concise in mathematics, and helps people to more easily to investigate and reveal 

the essential characteristics of the research object. 

Obviously, we have [36] dim𝑤 = 1 ,  𝑤 = 1
   
  𝑠 = Hz , dim 𝑠 = T−1 ;     

dim𝑦𝑘(𝑤) = 1 ,  𝑦𝑘(𝑤) = 1
   
  𝑍𝑘(𝑠) = Ω , dim𝑍𝑘(𝑠) = L2MT−3I−2 . This is true for all 

normalized variables! 

The impedance of all elements or components in Oldham fractal chain circuits are 

normalized by the resistance 𝑅, and the corresponding normalized iterating circuits are obtained, 

as shown in fig. 7.  

Obviously, these circuit diagrams, compared with fig. 6, fig. 7 are more concise. 

          

Marked by impedance  Marked by admittance    Marked by impedance   Marked by admittance 

(a)Type I: LFV       (b)Type II: HFV        (c)Type III: HFV       (d)Type IV: LFV 

Fig. 7. Normalized Oldham fractal chain circuit class: 

Equivalent simplified normalized iterating circuits 

3.6. Improvement of prototype circuits: Improved circuits and their mathematical 

descriptions 

It is known that Oldham type I fractal chain prototype circuit is a low-frequency valid non-

ideal approximation. Consider the normalized case, see fig. 7(a) and fig. 8(a), we have (13), that 

is 

𝑦O1(𝑤) = lim
𝑘→∞

𝑦𝑘(𝑤) =
1

2
+
1

2
 1 + 4/𝑤 = 𝑟O1 ≠ 𝑟I =  1/𝑤 .                   (15) 

In order to reduce the difference, the fixed point 𝑟O1 and 𝑟I =  1/𝑤, the prototype circuit 

must be modified. The simple improvement measure proposed by Oldham et al [18] is  

𝑟O1 −
1

2
=

1

2
 1 + 4/𝑤 = 𝑟O1     ,                                                      (16) 

so that the improved fixed point 𝑟O1     is more closer to the ideal fixed point 𝑟I =  1/𝑤 (see fig. 

8(b)). Form this, we immediately obtain the improved circuit as shown in fig. 9(a), and its 

corresponding iterating function and iterating equation, are respectively 

 𝐹O1    (𝑥) =
1

2
+

1

𝑤 +
1

1
2 + 𝑥

, 𝑥 = 𝐹O1    (𝑥) .                                          (17) 

𝑦𝑘(𝑤) 
 1/𝑤 

1 

𝑦
𝑘
−
1
(𝑤

) 

𝑦𝑘(𝑤) 

𝑦
𝑘
−
1
(𝑤

) 𝑤 

1 𝑦𝑘(𝑤) 

𝑦
𝑘
−
1
(𝑤

) 

1/𝑤 

1 
𝑦𝑘(𝑤) 

𝑦
𝑘
−
1
(𝑤

) 

𝑤 

1 
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    (a) Prototype fixed point and ideal fixed point  (b) Improved iterating curve and improved fixed point 

Fig. 8. Oldham Type I fractal chain circuit—iterating curves and fixed points: Normalized cases 

 

(a) Improved type I and IV: Non-ideal approximation, Low frequency validity 

 

(b) Improved Type II and III: Non-ideal approximation, High frequency validity 

Fig. 9. Improved Oldham fractal chain FACs: Normalized cases 

Similarly, better approximation performance can be obtained by improving the other three 

half-order valid Oldham fractal chain circuits (see fig. 6 and fig. 7). Their improved normalized 

circuits are shown in fig. 9. But they are still negative half-order valid non-ideal approximations. 

Therefore, a very natural question is: Are there ideal fractance approximation circuits in the full 

frequency range? 

The first full frequency valid ideal approximation FAC was the fractal lattice circuit (see 

fig. 10), which was proposed by G. E. Carlson in 1960 [14]. 

 

 
 

Fig.10. Carlson fractal lattice circuit: Normalized case 
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1
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3.7. Classical half-order fractal FACs: Ideal approximation case — Full frequency 

validity 
So far, we have obtained 5 kinds of half-order ideal approximation FACs with full-

frequency validity. They are the fractal lattice circuit as shown in fig.10 proposed by G. E. Carlson 

in 1960 [14], the fractal tree circuit as shown in fig.11 proposed by Nakagawa and Sorimach in 

1992 [22], the fractal pyramid and fractal tree circuits as shown in fig.12 proposed by Pu Yifei, 

Yuan Xiao, Liao Ke et al. in 2005 [37-39], and the fractal tree circuit as shown in fig.13 proposed 

by Yuan Xiao et al in 2013 [1, 40].  

 

 

      Fig. 11. N-S fractal tree circuit: Normalized case 

         
Fig. 12. Pu fractal pyramid and tree circuits:                    Fig. 13. Yuan fractal tree circuit: 

            Normalized case                                       Normalized cases 

 

N-S fractal tree circuit and Pu fractal pyramid circuit, Pu fractal tree circuit and Yuan fractal 

tree circuit are mutually dual circuits. Two FACs that are dual to each other have the same form of 

iterating function (see section 6.5). All these five fractal circuits can be equivalently reduced to 

simple iterating circuits, and then the corresponding iterating functions and equations can be 

obtained. Their normalized limiting impedance or admittance are half-order operator!                

That is lim
𝑘→∞

𝑦𝑘(𝑤) ∝ 𝑤±1/2 . 

4. Mathematical basis of the frequency-domain analysis: frequency-domain 

 characteristics and operational characteristics 

4.1. FACs and fractional-order circuit systems: Mathematical representations 

 System functions: Driving-point functions and transfer functions 

In general, for a Fractance Approximation Circuit (FAC) with finite size 𝑘, it is expressed 

by the driving-point functions (see fig.14(a)): impedance 𝑍𝑘(𝑠) or admittance 𝑌𝑘(𝑠); and for a 

two-port Fractional-Order Circuit with finite size 𝑘, it is expressed by the transfer function (see 

fig. 14(b)): 𝐻𝑘(𝑠). These functions are often uniformly called system functions. 
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   (а) One-port Fractance Approximation Circuit        (b) Two-port Fractional-Order Circuit  

Fig. 14. Mathematical representation of simple fractional-order circuit systems 

An ideal constant 𝜇-order transfer function is defined as 

𝐻(𝜇)(𝑠) = 𝑇(𝜇)𝑠𝜇,                            (18) 

where 𝑇(𝜇)is a lumped parameter, we call it the transfance [1, 2, 11]. This is the same formally as 

the ideal 𝜇-order fractance function discussed in section 2.1, see eq. (1): 𝐼(𝜇)(𝑠) = 𝐹(𝜇)𝑠𝜇, where 

𝐹(𝜇) is called the fractance [1, 2, 11, 12]. 

 Normalization treatment and unified mathematical expression 
Without loss of generality, in order to make the description and investigation of problem 

more concise in mathematics, we can always carry out the following normalization processing and 

further get a unified mathematical representation:  

 

System 
functions

 

𝑍𝑘(𝑠)

𝑌𝑘(𝑠)

𝐻𝑘(𝑠)
}

 Normalizating 
→           

𝜏=𝑅𝐶,𝜏𝑠=𝑤

 
 
 

 
 𝑍𝑘  

𝑤

𝜏
 /𝑅 =

 𝑅𝑌𝑘  
𝑤

𝜏
 =

𝐻𝑘  
𝑤

𝜏
 𝑇 = 

 
 

 
 

𝑦𝑘(𝑤) =
𝑁𝑘(𝑤)

𝐷𝑘(𝑤)
;

Normalized
system function

                 (19a) 

Ideal
cases

𝐼(𝜇)(𝑠) = 𝐹(𝜇)𝑠𝜇

𝐻(𝜇)(𝑠) = 𝑇(𝜇)𝑠𝜇
}
 Normalizating 
→           

𝜏𝑠=𝑤

 
 
 

 
 𝐼(𝜇)(𝑤

𝜏
)

𝐹(𝜇) 𝜏𝜇 
=

𝐻(𝜇)(𝑤
𝜏
)

𝑇(𝜇) 𝜏𝜇 
=
 
 
 

 
 

𝜄(𝜇)(𝑤) = 𝑤𝜇;             (19b) 

Non − ideal
cases

  
𝐼 (𝜇)(𝑠)

�̃�(𝜇)(𝑠)
}
 Normalizating 
→           

𝜏𝑠=𝑤
𝜄 ̃(𝜇)(𝑤) ≈ 𝜄(𝜇)(𝑤) = 𝑤𝜇

Additional conditions

.        (19c) 

In Section 3.5, normalizing the Oldham fractal chain circuits is a successful example. 

4.2. Frequency response — Frequency-domain characteristics: Order-frequency 

characteristics 

When studying the signal analysis and processing ability of an analog circuit system, it is 

usually carried out in the frequency domain. 

 Frequency response: Amplitude-frequency characteristics and phase-frequency 

characteristics 

In the normalized system functions 𝑦𝑘(𝑤) and 𝜄(𝜇)(𝑤), etc, take 𝑤 = j𝜔, we get the 

frequence response: 

𝑦𝑘(j𝜔) = 𝐴𝑘(𝜔)ej𝑃𝑘(𝜔) ⟺  
𝐴𝑘(𝜔) = |𝑦𝑘(j𝜔)|   

𝑃𝑘(𝜔) = arg{𝑦𝑘(j𝜔)}
   j = √−1

𝜔 ∈ ℝ
 ,               (20a) 

+
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𝜄(𝜇)(j𝜔) = 𝐴(𝜇)(𝜔)ej𝑃
(𝜇)(𝜔) ⟺  

𝐴(𝜇)(𝜔) =  𝜄(𝜇)(j𝜔) = |𝜔|𝜇       

𝑃(𝜇)(𝜔) = arg 𝜄(𝜇)(j𝜔) =
π

2
𝜇 sig𝜔

   j = √−1
𝜔 ∈ ℝ

 .   (20b) 

Where 𝐴𝑘(𝜔)  and 𝐴(𝜇)(𝜔)  are called amplitude-frequency (or magnitude-frequency) 

characteristic functions, referred to as amplitude-frequency characteristics; 𝑃𝑘(𝜔) and 𝑃(𝜇)(𝜔) 
are called phase-frequency characteristic functions or phase-frequency characteristics for short. 

 Bode representation of the frequency response 

In the field of engineering technology, Bode expressions and Bode curves are usually used 

to better investigate and study the intrinsic properties of the system. That is, taking 

𝜔 = 10𝜛 ⟺ 𝜛 = lg𝜔 , 𝜛 ∈ ℝ,𝜔 ∈ ℝ+, 

one get the amplitude-frequency characteristic functions in the form of double logarithmic coordinates 

𝛬𝑘(𝜛) = lg 𝐴𝑘(10
𝜛) , 𝛬(𝜇)(𝜛) = lg 𝐴(𝜇)(10𝜛) = 𝜇𝜛,   𝜛 ∈ ℝ ,     (21) 

we still call they the amplitude-frequency characteristics or magnitude-frequency characteristics; 

and the phase-frequency characteristic functions in the form of single logarithmic coordinates 

𝜃𝑘(𝜛) = 𝑃𝑘(10
𝜛), 𝛩(𝜇)(𝜛) = 𝑃(𝜇)(10𝜛) =

π𝜇

2
𝐂𝐨𝐧𝐬𝐭𝐚𝐧𝐭 𝐏𝐡𝐚𝐬𝐞 𝐏𝐫𝐨𝐩𝐞𝐫𝐭𝐲

, 𝜛 ∈ ℝ   ,        (22) 

we still call they the phase-frequency characteristics. 

 Frequency response: Order-frequency characteristics 
For fractional-order circuits and systems, especially, for FACs, the operational 

characteristics are very important. About 15 years ago, after many considerations and experimental 

verification, we proposed a new frequency-domain characteristic functions—order-frequency 

characteristic functions or order-frequency characteristics for short, which is defined as [1, 2] 

𝜇𝑘(𝜛) =
d𝛬𝑘(𝜛)

d𝜛
,  𝑀(𝜇)(𝜛) =

d𝛬(𝜇)(𝜛)

d𝜛
= 𝜇

𝐂𝐨𝐧𝐬𝐭𝐚𝐧𝐭 𝐎𝐫𝐝𝐞𝐫 𝐏𝐫𝐨𝐩𝐞𝐫𝐭𝐲

, (𝜛 ∈ ℝ).                    (23) 

They are used to describe the calculus operational capability and operational features of analog 

circuits and systems, especially when emphasizing the analysis of operational performances. 

Constant phase and constant order in the frequency-domain are the most essential 

properties of constant order fractance approximation circuits or fractional-order circuits and 

systems! 

Order-frequency and phase-frequency characteristics, we unified called operational 

characteristics. 

4.3. Operational characteristics of first-degree metasystem 
The normalized system function of a first-degree metasystem with negative real zero-pole 

pair (𝑧𝑖, 𝑝𝑖) is defined as [1, 2] 

𝑚𝑖(𝑤) =
𝑤 − 𝑧𝑖
𝑤 − 𝑝𝑖

=
𝑤 + 10𝑜𝑖

𝑤 + 10𝜒𝑖
    

𝑜𝑖 ∈ ℝ
𝜒𝑖 ∈ ℝ

 ,                                         (24) 

its phase-frequency characteristics 𝜗𝑖(𝜛)  and order-frequency characteristics 𝑢𝑖(𝜛)  are 

respectively 
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𝜗𝑖(𝜛) = arctan
sinh(−1

2
ln 𝛼𝑖)

cosh((𝜛 − 𝜛𝑖) ∙ ln10)
    

𝛼𝑖 = 10𝑜𝑖−𝜒𝑖 = 𝑧𝑖 𝑝𝑖 

𝜛𝑖 = (𝑜𝑖 + 𝜒𝑖)/2
 ,                (25a) 

𝑢𝑖(𝜛) = arctan
sinh(ln 𝛼𝑖)

cosh(2(𝜛 −𝜛𝑖) ∙ ln10) + cosh(ln 𝛼𝑖)
.                         (25b) 

Both of them have highly localization features, as shown in figure 14, that is, we have 

  𝜗𝑖(𝜛)d𝜛

 

𝜛∈ℝ

=
π

2
lg 𝛼𝑖 ,    𝑢𝑖(𝜛)d𝜛

 

𝜛∈ℝ

= lg 𝛼𝑖 ,    𝛼𝑖 =
𝑧𝑖
𝑝𝑖
 .                    (26) 

Where 𝛼𝑖 = 10𝑜𝑖−𝜒𝑖 = 𝑧𝑖 𝑝𝑖  is zero-pole ratio. These conclusions are crucial to our research of 

FACs! 

           

(a) Phase-frequency characteristics     (b) Order-frequency characteristics 

Fig. 14. Operational characteristic curves of the first-degree metasystem 

It is these localization features that provide a theoretical support for us to define the order-

frequency characteristic functions as (23), and at the same time, it is the mathematical theoretical 

basis for us to understand and develop the FACs, and many valid rational approximation methods 

of fractional operators! 

4.4. Operational characteristics of Oldham fractal chain circuits: Non-ideal 

approximation case 

Consider the normalized Oldham improved type I and Ⅱ fractal chain circuits. Its input 

impedance sequence can be obtained and expressed analytically as [1, 2, 41] 

𝑦0(𝑤) = ∞ → 𝑦I̅𝑘(𝑤) =
1

2
 1 + 4/𝑤 coth (𝑘 ∙ acosh  1 +

𝑤

2
 )

𝑘→∞
1>|𝑤|→0 
→      

𝐋𝐅𝐕
 1/𝑤,       (27a) 

𝑦0(𝑤) = ∞ → 𝑦II̅𝑘(𝑤) =
1

2𝑤
√1 + 4𝑤 tanh (𝑘 ∙ acosh  1 +

1

2𝑤
 )

𝑘→∞
 1<|𝑤|→∞ 
→       

𝐇𝐅𝐕
 1/𝑤.  (27b) 

Of course, there are several effective algorithms for solving finite length {𝑦𝑘(𝑤)}, 
especially numerical methods. In the field of FACs, calculating {𝑦𝑘(𝑤)} is a very important 
and necessary basic task. Accordingly, their characteristic curves in the frequency-domain are 

plotted, as shown in fig. 15. In these graphs, the red dash straight lines corresponds to the case of 

an ideal negative half-order fractor, that is 𝑤−1/2. 

 

0 

−
π

2
 

𝑜𝑖 𝜒𝑖 
𝜗𝑖(𝜛) 

𝜛 

lg𝛼𝑖 

−1 

0 

lg𝛼𝑖 

𝜒𝑖 𝑜𝑖 
𝑢𝑖(𝜛) 

𝜛 
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The 𝐾 = lg4 in fig.15, we call the eigen K index or K index for short. The eigen K index 

profoundly characterizes the approximation performance and iterating convergence performance 

of the corresponding circuit [1, 2]. 

 

 
(a) Phase-frequency characteristic curves: Improved type I, improved type II 

 
(b) Order-frequency characteristic curves: Improved type I, improved type II 

Fig. 15. Operational characteristic curves: Normalized Improved Oldham type Ⅰ and Ⅱ 

4.5. Operational characteristics of Carlson fractal lattice circuits: FFV ideal 

approximation 

Consider the normalized Carlson fractal lattice circuit. Its input impedance sequences can be 

obtained and expressed analytically as [1, 2, 41] 

 
 
 

 
 𝑦0(𝑤) = ∞ → 𝑦O𝑘(𝑤) =

1

√𝑤
coth(𝑘 ∙ acosh  

𝑤 + 1

𝑤 − 1
 )

 𝑘→∞ 
→   
𝐅𝐅𝐕 

1

√𝑤
,

𝑦0(𝑤) = 0 → 𝑦S𝑘(𝑤) =
1

√𝑤
tanh (𝑘 ∙ acosh  

𝑤 + 1

𝑤 − 1
 )

 𝑘→∞ 
→   
𝐅𝐅𝐕 

1

√𝑤
.

                           (28) 

Thus, the frequency-domain characteristic curves is drawn, as shown in fig. 16. In this FFV ideal 

approximation case, the eigen K index 𝐾 = 2lg4. 

Why are there such conclusions for the eigen K index of these half-order valid FACs? Can 

anyone prove these mathematically and rigorously? As far as the author knows, this is a problem 

that has not been solved yet! However, using the brief analysis method of fractal circuit, it can be 

roughly obtained in a non-strict sense that the eigen K index are indeed so [35]. 
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(a) Amplitude-frequency characteristic curves 

 
(b) Phase-frequency characteristic curves 

 

(c) Order-frequency characteristic curves 

Fig. 16. Frequency-domain characteristic curves: Normalized Carlson fractal lattice circuit 

5. Liu-Kaplan fractal chain circuits and their mathematical descriptions 

There is a hidden order everywhere, and mathematics can sometimes reveal it. 

5.1. Fractal model for the ac response of a rough interface 

In 1985, for a rough interface between two materials of very different conductivities, e.g., 

an electrode and an electrolyte, based on the morphological-geometric characteristics, S. H. Liu 

cleverly and ingeniously proposed a fractal model, namely the regular Cantor fractal-bar model as 

shown in figure 17(a). The analogical equivalent circuit of this fractal model (see figure 17(b)), 

which takes into consideration the resistance in the two substances and the capacitance of the 

interface, has the property of the so-called constant-phase element, i.e., a passive circuit element 

whose complex impedance has a power-law singularity at low frequencies. The exponent of the 

frequency dependence is related to the fractal dimension. The model also provides insight into the 

conducting properties of the percolating cluster and the source of the 1/f noise in electronic 

components [19]. 
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Fig. 17. Analogical transformation and equivalent simplification: Liu fractal model→Liu-Kaplan 

fractal chain circuits: (a) Regular Cantor fractal-bar model Morphology-geometric modeling;     

(b) Circuit modeling —Liu fractal tree circuit; (c) Liu-Kaplan fractal chain circuit; (d) Scaled 

iterating circuit 

 

To put it simply, the analogical equivalent circuit has the ability to realize arbitrary-order 

fractional operators in the low frequency range by adjusting the element parameters and structure 

parameters.  In order to deeply express our respect for Liu, we called this circuit as the Liu’s 

fractal tree circuit [1, 2]. 

5.2. Analogical transformation and equivalent simplification of problems and their 

mathematical description—Irregular Liu-Kaplan scaling equation 

 Analogical transformation and circuit modeling 
By analogical transformation of physical objects, the equivalent modeling of the regular 

Cantor fractal-bar interface into Liu’s fractal tree is a crucial first step. Its input impedance function 

𝑍𝑘(𝑠), according to the circuit structure characteristics, can be directly written in finite irregular 

continued fraction form, 

 𝑍𝑘(𝑠) = 𝑅 +
1

𝐶𝑠 +

𝑣

𝑎𝑅 +

1

𝐶𝑠 +

𝑣

𝑎2𝑅 +

1

𝐶𝑠 +

𝑣

𝑎3𝑅 +

1

𝐶𝑠+⋱
.                             (29) 

 Mathematical equivalent transformation — Regular continued fraction and Liu-

Kaplan fractal chain circuit 

Equation (29) can be equivalently transformed to regular (or simple) continued fraction 

form, 

𝑍𝑘(𝑠) = 𝑅 +
1

𝐶𝑠 +

1

𝛼𝑅 +

1

𝛽𝐶𝑠 +

1

𝛼2𝑅 +

1

𝛽2𝐶𝑠+⋱
,  

𝛼 = 𝑎/𝑣 ∈ ℝ+

𝛽 = 𝑣 ∈ ℝ+  .              (30) 

(a) 

𝑅 𝛼𝑅 𝛼𝑘−1𝑅 

 

Basic section 

𝑍𝑘(𝑠) 𝛽𝑘−1𝐶 𝛽𝐶 𝐶 

Mathematical 
 

equivalent 
transformation 

数学等价转化 

与等价简化 
Liu-Kaplan fractal chain circuit model 

Analogical 
transformation 

 
of physical object 

2 分支 4 级 

刘氏分形树电路 

𝑎3𝑅 𝐶 

𝑎3𝑅 

𝐶 

𝑎3𝑅 

𝐶 

𝑎3𝑅 

𝐶 

𝑎2𝑅 

𝐶 

𝑎2𝑅 

𝐶 

𝑎3𝑅 

𝐶 

𝑎3𝑅 

𝐶 

𝑎3𝑅 

𝐶 

𝑎3𝑅 

𝐶 

𝑎2𝑅 

𝐶 

𝑎2𝑅 

𝐶 

𝑅 

𝐶 

𝑎𝑅 

𝐶 

𝑎𝑅 

𝐶 

Regular Cantor fractal-bar model 
of a rough interface between an electrolyte 
(black) and an electrode (white). 𝑍𝑘(𝑠) ⟹ 

Branches 
𝑣 = 2 

Levels 
𝑘 = 4 

Morphology- 
Geometric 
Modeling 

形态-几何建模 

(b) Circuit modeling 

Liu fractal tree circuit model 

𝛼
𝑍
𝑘
−
1
(𝜚
𝑠)

 

𝑅 

𝑍𝑘(𝑠) 1

𝐶𝑠
 

Mathematical 
equivalent 

simplification 

Circuit 电路等价简化 

equivalent 
simplification 

Scaled iterating circuit 

𝛼 = 𝑎/𝑣 Resistance recursive ratio 

𝛽 = 𝑣  Capacitance recursive ratio 

𝜚 = 𝛼𝛽 Scaling factor 

(c) 

(d) 



ЭЛЕКТРОНИКА   |   Электроника, фотоника и киберфизические системы. 2023. Т.3. №3. 

44 

From this, we obtain the Liu-Kaplan fractal chain circuit shown in fig. 17(c). Where, 𝛼 = 𝑎 𝑣 , 

we call the resistance progression ratio, and 𝛽 = 𝑣, we call the capacitance progression ratio, they 

are collectively referred to as the scaling feature parameters [1, 2]. 

 Mathematical equivalent simplification — Scaled iterating formula and scaled 

iterating circuit 
Further, Eq. (30) is simplified equivalently to scaled iterating form, 

𝑍0(𝑠) =
𝑁0(𝑠)

𝐷0(𝑠)
→ 𝑍𝑘(𝑠) = 𝑅 +

1

𝐶𝑠 +
1

𝛼𝑍𝑘−1(𝜚𝑠)

,  
𝑘 ∈ ℕ+

𝜚 = 𝛼𝛽 ∈ ℝ+ .            (31) 

Where 𝜚 = 𝛼𝛽 ≠ 1, we call it the scaling factor. From this we draw the scaled iterating circuit 

shown in fig. 17(d) [1, 2, 18-20]! 

The three circuits in fig.17, namely the Liu fractal tree circuit, the Liu-Kaplan fractal chain 

circuit and the scaled iterating circuit, are functionally equivalent! 

5.3 Determination of the operational validity—Liu-Kaplan scaling equation and Liu’s 

rough solution 

 Limiting impedance and Liu-Kaplan scaling equation 

The input impedance sequence {𝑍𝑘(𝑠)}𝑘∈ℕ, which iterated from (31), if convergent, then 

its limiting impedance 𝑍LK(𝑠) = lim𝑘→∞𝑍𝑘(𝑠) is found by the irregular scaling equation—Liu-

Kaplan scaling equation 

 𝑍(𝑠) = 𝑅 +
1

𝐶𝑠 +
1

𝛼𝑍(𝜚𝑠)

,    
𝛼 ∈ ℝ+, 𝛽 ∈ ℝ+

𝜚 = 𝛼𝛽 ∈ ℝ+  .                             (32) 

We call this Liu-Kaplan scaling equation because it was first exactly derived by T. Kaplan et al. in 

1985 [18-20]. So far, as far as the author knows, this is an irregular scaling equation that can not 

be also solved analytically, or it is extremely difficult to solve analytically. Perhaps it is the author’s 

solitary omissions, only shallow knowledge, sincerely seek the master to learn. 

 Regular scaling equation and approach analytical solution —Liu’s rough solution 
Form the circuit point of view, as in section 3.4 for the Oldham fractal chain circuits, see 

expressions (9), (10), we have (let 𝛺𝜏 =
1

𝑅𝐶
) 

𝛼𝑍(𝜚𝑠) ≈ 𝑍(𝑠)
  0←|𝑠|<𝛺𝜏  
        

Low frequency
𝑍(𝑠) = 𝑅 +

1

𝐶𝑠 +
1

𝛼𝑍(𝜚𝑠)

  𝛺𝜏<|𝑠|→∞  
→        

High frequency
𝑍(𝑠) ≈ 𝑅.         (33) 

This leads to a regular scaling equation in the low frequency range: 𝑍(𝑠) ≈ 𝛼𝑍(𝜚𝑠). Thus, an 

approach analytical solution— Liu’s approach solution is obtained [18] : 

𝑍LK(𝑠) ≈ 𝑍Liu(𝑠) = 𝜅𝑠𝜇Liu , 𝜇Liu = −
lg 𝛼

lg 𝜚
 .                            (34) 

Where 𝜅 is a scalar factor; 𝜇Liu, we call it Liu’s operational order, or Liu’s order for short; The 

power function 𝑍Liu(𝑠) = 𝜅𝑠𝜇Liu is called Liu’s rough solution [1, 2] . 

According to the operational characteristics of Liu’s rough solution, the operational validity 

of the circuits described by the irregular scaling equation can be preliminarily determined. These 

circuits are low frequency valid FACs, and more importantly, by adjusting the scaling feature 
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parameters, i.e. 𝛼  and 𝛽 , one can get arbitary negative fractional-order FACs in the low 

frequency range! 

The Oldham fractal chain circuits have only negative half-order operational ability. 

5.4 Normalization processing and the frequency-domain characteristics 

 Normalization: Scaled iterating circuit and iterating function 

Let 𝜏 = 𝑅𝐶, 𝑤 = 𝜏𝑠, the Liu-Kaplan fractal chain circuits (Fig. 17 (c), (d)) are normalized, 

and the results are shown in fig. 18. The corresponding normalized iterating algorithm formula is 

𝑦0(𝑤) =
𝑁0(𝑤)

𝐷0(𝑤)

     
→ 𝑦𝑘(𝑤) = 1 +

1

𝑤 +
1

𝛼𝑦𝑘−1(𝜚𝑤)

,   𝑘 ∈ ℕ+,                        (35) 

 

(a) Prototype circuit     (b) Scaled iterating circuit   (c) Irregular scaling equation circuit 

Fig. 18. Normalized Liu-Kaplan fractal chain circuits 

and the normalized Liu-Kaplan scaling equation is 

 𝑦(𝑤) = 𝐹OI(𝛼𝑦(𝜚𝑤)),   𝐹O1(𝑥) = 1 +
1

𝑤 +
1
𝑥

.                               (36) 

This is an irregular scaling equation, and its corresponding circuit representation is shown in 

fig.18(c), which is called an irregular scaling equation circuit. Here, its iterating function is exactly 

the iterating function 𝐹O1(𝑥)  that describes the Oldham (type I) fractal chain circuit! See 

expressions (6) and (12). 

𝐹O1(𝑥) , this seemingly extremely simple function, is the key to unclocking our 

understanding of the circuits it describes and their complex physical systems and processes. 

  Frequency-domain characteristics: Negative half-order case and operational 

oscillating effects 
According to the algorithm formula (35), in MATLAB , it is easy to program, and to solve 

numerically the finite-length input impedance function sequence {𝑦𝑘(𝑤)}𝑘=1~𝐾. Thus, from this, 

the frequency-domain characteristic curves are drawn for investigation and analysis. 

Let’s first consider the case of Liu’s order 

𝜇Liu = −1/2, i.e. 𝛼 = 𝛽 =  𝜚 > 1.                        (37) 

Some of the results are shown in fig.19. 

By observing a large number of numerical experiment results, the following qualitative 

conclusions are preliminary listed: 

1) The value of the initial impedance 𝑦0(𝑤) , affects the operational performance and 

approximation performance in the very low frequency range. 

2) A simple change in the circuit will improve the approximation performance and thus improve 

the operational performance. This is similar to the Oldham fractal chain circuits. 

3) In contrast to the Oldham fractal chain circuit, the Liu-Kaplan fractal chain circuit has a 

deterministic periodic operational oscillating effect in the approximation frequency band (see 
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the phase frequency and order frequency characteristic curves in fig. 19)! Its oscillating period 

𝑊 = lg 𝜚, where 𝜚 = 𝛼𝛽 > 1, is the scaling factor. 

4) Here, the operational oscillating effects, break the constant phase property and constant order 

property which is expected by the FACs!  

 

 
(a) Prototype circuit: 𝑦𝑘(𝑤)         (b) Improved circuit: 𝑦𝑘(𝑤) − 1/3 

Fig.19. Frequency-domain characteristics: 𝜇Liu = −1/2, 𝜚 = 10, 𝑦0(𝑤) = 1 

Such periodic oscillation fluctuates in the approximation frequency-band around the 

invariant characteristic horizontal line (i.e., red dashed lines in fig.19) of the ideal operator at Liu’s 

order, i.e. 𝜅𝑤𝜇Liu, 𝜇Liu = −1/2. Why is this? 

 Frequency-domain characteristics: General Negative fractional-order cases and 

operational oscillating effects 

Consider the case of Liu’s order 𝜇Liu = −𝑗/10 (𝑗 = 1, 3, 5, 7, 9) when scaling factor 𝜚 

is given. The frequency-domain characteristic curves are drawn by 𝑦𝑘(𝑤) , as shown in        

fig. 20, 21. 

For scaling fractance approximation circuits, in general, there is always an inherent quasi-

periodic operational oscillating effect [1]. Its oscillating period 𝑊 = lg𝜚. This is because for an 

irregular scaling equation, such as Liu-Kaplan scaling equation (36), under logarithmic scale, we 

have 

𝑦(j ∙ 10𝜛) = 𝐹O1  𝛼𝑦(j ∙ 10
𝜛+lg𝜚) ,   𝑦(j ∙ 10𝜛) = 1 +

1

𝑤 +
1

𝛼𝑦(j ∙ 10𝜛+lg𝜚)

.      (38) 

Therefore, the so-called quasi-periodic phenomenon here is also called log-periodicity in some 

literature [8]. In the approximation frequency band, we have [1] 
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𝜃𝑘(𝜛) ≈
π

2
𝜇Liu +𝑚o(𝜇Liu, 𝜚)sin 

2π

lg𝜚
𝜛 + 𝜗(𝜇Liu, 𝜚) ,                         (39a) 

𝜇𝑘(𝜛) ≈ 𝜇Liu +𝑚p(𝜇Liu, 𝜚)sin 
2π

lg𝜚
𝜛 + 𝜗(𝜇Liu, 𝜚) .                         (39b) 

 

 

Fig. 20. Frequency-domain characteristics: 𝜚 = 10, 𝑦0(𝑤) = ∞, 𝑘 = 15 

 

Fig. 21. Frequency-domain characteristics: 𝜚 = 6, 𝑦0(𝑤) = 1, 𝑘 = 20 

6. Scaling extension theory and irregular scaling equations 

The design and fabrication of arbitrary real-order 𝜇  ( 0 < |𝜇| < 1 ) fractance 

approximation circuits (FACs) is the lofty goal of physical realization and application of ideal 

fractional operator, or ideal fractance function 

𝐼(𝜇)(𝑠) = 𝐹(𝜇)𝑠𝜇
     𝜏𝑠=𝑤     
→      

Normalizating
𝜄(𝜇)(𝑤) = 𝑤𝜇     

0 < |𝜇| < 1
𝜇 ∈ ℝ

 .           (40) 

In the absence of fractional-order components, people can only try their best to achieve and 
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synthesize (approximately) the operational performance of fractional operators by means of 

existing elements, devices and technologies. Or observe and analyze a variety of (inorganic and 

organic) materials, devices (or biological organs, tissues), complex real systems and their 

behaviors, as well as a large number of fractional phenomena and processes occurring in physics 

(especially nanophysics), chemistry, biology, medicine, engineering mechanics and other fields, 

even if only within a certain frequency range, it is beneficial to establish the model of FACs. 

6.1. Traditional methods of designing and constructing FACs 

Historically, there have been two main paths to research and development of FACs. 

Analogical circuit modeling 
In scientific and experimental research, FACs are modeled by use of analogical 

transformation, equivalent simplification, and other means based on a large number of complex 

real-world systems with fractional-order processes and phenomena. We call this method “the 

analogical circuit modeling” [1, 2]. For example, 

homogeneous distributed RC networks, 

Oldham negative half-order fractal chain circuits [18], 

Liu’s fractal tree circuits [19-21], 

Nakagawa-Sorimach fractal tree [22], 

Haba fractional capacitors [23-26], 

etc., are very convincing typical results in the analogical circuit modeling. 

Mathematical rational approximation 
Based on a variety of mathematical techniques, within a certain frequency range, the 

physical realizable rational approximation function sequence of the fractional operator is first 

theoretically carried out, and then transformed into a practical circuit (especially passive circuit 

networks) [1]. For example, 

Carlson half-order fractal lattice circuit [14], 

Carlson ±1/𝑛-order regular iterating algorithm [15], 

Dutta Roy continued fraction expansion [16, 17], 

Charef arbitrary order method [42-45], 

Matsuda log-frequency point CFE method [46], 

Oustaloup zero-pole construction method [47], 

and so on are the models of mathematical rational approximation. 

Is there a third way to building new type of FACs? In particular, new arbitrary-order valid 

FACs! 

6.2 Scaling extension theory and its mathematical descriptions 

Comparing Low Frequency Valid half-order Oldham typeⅠand arbitrary-order Liu-

Kaplan fractal chain circuits shown in fig. 22, and the beautiful iterating equations describing them 

(normalized cases): 

 

Oldham: Half-order valid  Liu-Kaplan: Arbitrary order   Shared iterating function 

 𝑦(𝑤) = 𝐹O1(𝑦(𝑤)),
Algebraic iterating equation

         𝑦(𝑤) = 𝐹O1(𝛼𝑦(𝜚𝑤))
Irregular scaling equation

,    𝐹O1(𝑥) = 1 +
1

𝑤 +
1
𝑥

.  
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             (a) Prototype circuits    (b) Simple iterating circuits   (c) Iterating equation circuits 

Fig. 22. Normalized Oldham type I and Liu-Kaplan fractal chain circuits: 

 1 < 𝛼 < ∞, 1 < 𝛽 < ∞, 𝜚 = 𝛼𝛽. 

Scaling extension: Basic concepts and their mathematical descriptions 
According to the above comparative investigation. it is very easy to see that Oldham type

Ⅰis a special case of Liu-Kaplan fractal chain circuits (i.e., 𝛼 = 𝛽 = 𝜚 = 1), and Liu-Kaplan 

fractal chain circuit is a generalization of Oldham typeⅠ, we call this scaling extension [48, 49] ! 

The corresponding mathematical statement is that the half-order valid algebraic iterating equation 

is scaled to become (possibly) an arbitrary-order valid irregular scaling equation (considering the 

normalization case): 

𝑦(𝑤) = 𝐹(𝑦(𝑤))
half−order valid
iterating equation

 Scaling extension 
→             

0<𝛼<∞,   𝛼≠1
0<𝛽<∞,   𝛽≠1

𝜚=𝛼𝛽≠1
  

𝑦(𝑤) = 𝐹(𝛼±1𝑦(𝜚± 1𝑤))
arbitary−order valid

 irregular scaling equation

.            (41) 

Where 𝛼 and 𝛽 are still called scaling feature parameters, and 𝜚 = 𝛼𝛽 ≠ 1 is scaling factor. 

 Low-frequency validity and direct proportion extension 

In fig. 22, for the half-order low frequency valid (LFV) FAC, after scaling extension, it is 

still a low frequency valid arbitrary FAC, but the following conditions must be met: 

1 < 𝛼 < ∞, 1 < 𝛽 < ∞, 1 < 𝜚 = 𝛼𝛽 < ∞.                  (42) 

Scaling extension that satisfies condition (41) is called direct proportion extension (DPE). 

By direct proportion extension of the improved Oldham fractal chain circuit (see fig.9(a), 

and expression (17)), which is a half-order low frequency valid (LFV) circuit, we obtain a new 

scaled fractal chain circuit as shown in fig.23(a), which is still a LFV, but has an arbitrary 

operational order, namely Liu’s order 𝜇Liu = − lg 𝛼 / lg 𝜚. The scaling equation describing this 

scaled circuit is irregular, i.e. 

 𝑦(𝑤) = 𝐹O1    (𝛼𝑦(𝜚𝑤)) =
1

2
+

1

𝑤+
1

1
2
+𝛼𝑦(𝜚𝑤)

.                             (6.4) 

       

(a) LFV  direct proportion extension  LFV: 1 < 𝛼 < ∞, 1 < 𝛽 < ∞, 𝜚 = 𝛼𝛽 
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(b) HFV  inverse proportion extension  HFV: 0 < 𝛼 < 1, 0 < 𝛽 < 1, 𝜚 = 𝛼𝛽 

Fig. 23. New scaling circuits — Improved Oldham fractal chain circuits after scaling extension: 

Normalized case 

 High-frequency validity and inverse proportion extension 

By scaling the half-order high frequency valid improved Oldham fractal chain circuit (see 

fig. 9(b)), we get a new scaled fractal chain circuit as shown in fig.23 (b), whose scaling equation 

is 

 𝑦(𝑤) =
1

2𝑤
+

1

1 +
1

1
2𝑤 + 𝛼𝑦(𝜚𝑤)

.                                                     (44) 

Obviously, this is an irregular scaling equation which is difficult or impossible to solve 

analytically. Maybe we need to introduce a new special function? However, in the high 

frequency range, a regular scaling equation can be approximated with Liu’s rough solution: 

 𝑦(𝑤) ≈ 𝛼𝑦(𝜚𝑤) ⟹ 𝑦(𝑤) ≈ 𝑦Liu(𝑤) = 𝜅𝑤𝜇Liu , 𝜇Liu = − lg 𝛼 / lg 𝜚.            (45) 

This conclusion shows that the corresponding circuit should be a high frequency valid scaled FAC! 

Why do we say “should be” here? Because for the scaled circuit to be valid in the high 

frequency range, the following conditions must be met: 

0 < 𝛼 < 1, 0 < 𝛽 < 1, 0 < 𝜚 = 𝛼𝛽 < 1.                  (46) 

Otherwise, each subsection of this scaled circuit will operate in the low frequency band showing 

negative first-order operational performance (i.e., almost pure capacitive operational performance), 

and in the high frequency band is showing resistive operational performance! 

Scaling extension that satisfies condition (44) is called inverse proportion extension (IPE). 

Now, we can preliminarily summarize the following conclusions:  

LFVdirect proportion extensionLFV;  

HFVinverse proportion extensionHFV. 

 Full-frequency validity and scaling extension 

So far, we have obtained five Full Frequency Valid (FFV), ideal approximation half-order 

FACs: 

 Carlson fractal lattice circuit (1960, Carlson G.E., see fig.10) [14], 

 Nakagawa-Sorimach fractal tree circuit (1992, Nakagawa M., Sorimach K., fig.11) [22], 

 Pu fractal pyramid circuit (2005, Pu Yifei, Yuan Xiao,et al, fig.12) [37], 

 Pu fractal tree circuit (2005, Pu Yifei, Yuan Xiao, et al, fig.12) [38, 39], 

 Yuan fractal tree circuit (2013, Yuan Xiao et al, fig.13) [1, 40]. 

Considering negative half-order, FFV Carlson fractal lattice circuit (see fig.10), its 

scaling extension case is shown in fig.24. The irregular scaling equation corresponding to this 

scaling circuit,  

𝑦
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           (a) Prototype circuit           (b) Scaled iterating circuit and scaling equation circuit 

Fig. 24. Scaled fractal lattice circuits: Normalized case 

which we call the lattice scaling equation, [2, 40, 50] is 

𝑦(𝑤) = 𝐹C(𝛼𝑦(𝜚𝑤)),  𝐹C(𝑥)=
2 + (1 + 𝑤)𝑥

(1 + 𝑤) + 2𝑤𝑥
     

𝛼 ≠ 1, 𝛽 ≠ 1
𝜚 = 𝛼𝛽 ≠ 1

  .                       (47) 

According to the structure of the scaling fractal lattice circuit, lattice scaling equation (47) is 

approximately solved, and Liu’s rough solution is obtained: 

𝑦(𝑤) ≈ 𝑦Liu(𝑤) = 𝜅𝑤𝜇Liu , 𝜇Liu = −
lg 𝛼

lg 𝜎
. 

From this we can conclude: direct proportion extensionLFV; inverse proportion 

extensionHFV. 

Using Liu’s rough solution can only preliminarily judge the operational validity. The actual 

operational characteristic curves of the scaling lattice circuit are shown in Fig.25! 

6.3. Continued fraction expansion approximations for half-order operator and strange 

scaling equations 

Consider the mathematical basis of the ancient Continued Fraction Expansion approximations 

of square root — classical identity relations: 

 
 
 
 

 
 
  1 + 𝑤±1 = 1 +

𝑤±1

1 + √1 + 𝑤±1
,   

 1 + 𝑤±1 − 1 =
𝑤±1

2 + √1 + 𝑤±1 − 1
,

 𝑤±1 =
𝑤±1 + √𝑤±1

1 + √𝑤±1
.          

                                                     (48) 

Of course, there could be other identities. Let √1 + 𝑤±1 = 𝑦(𝑤) , √1 + 𝑤±1 − 1 = 𝑦(𝑤)     

(to non-ideal approximation), and√𝑤±1 = 𝑦(𝑤) (to an ideal approximation) respectively, we 

obtain three simple, half-order valid algebraic iterating equations: 

𝑦(𝑤) = 𝐹CFE1(𝑦(𝑤)), 𝑦(𝑤) = 𝐹CFE2(𝑦(𝑤)),         𝑦(𝑤) = 𝐹CFE3(𝑦(𝑤));         (49) 

𝐹CFE1(𝑥) = 1 +
𝑤±1

1 + 𝑥
, 𝐹CFE2(𝑥) = 1 +

𝑤±1

1 + 𝑥
, 𝐹CFE3(𝑥) =

𝑤±1 + 𝑥

1 + 𝑥
.   

It is easy to verify that the three iterating processes thus constructed satisfy the 

computational rationality and positive reality principle. Their operational validity is self-evident! 
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In mathematics, by direct scaling extension, we get three sets of irregular strange scaling 

equations:    

    𝑦(𝑤) = 𝐹CFE1(𝛼
±1𝑦(𝜚𝑤)) = 1 +

𝑤±1

1+𝛼±1𝑦(𝜚𝑤)
 ,                                           (50a) 

𝑦(𝑤) = 𝐹CFE2(𝛼
±1𝑦(𝜚𝑤)) =

𝑤±1

2 + 𝛼±1𝑦(𝜚𝑤)
 ,                                         (50b) 

𝑦(𝑤) = 𝐹CFE3(𝛼
±1𝑦(𝜚𝑤)) =

𝑤±1 + 𝛼±1𝑦(𝜚𝑤)

1 + 𝛼±1𝑦(𝜚𝑤)
 .                                    (50c) 

As we shall see, these three sets of equations contain very rich connotations and also have 

some unusual characteristics. For example, to select (50c), consider the following equation: 

𝑦(𝑤) =
𝑤 + 𝛼−1𝑦(𝜚𝑤)

1 + 𝛼−1𝑦(𝜚𝑤)
.                                                           (6.12) 

 

(a) Before scaling extension：𝛼 = 𝛽 = 1，𝜇 = −1/2 

 

     (b) Direct proportion extension：𝛼 = 𝛽 = 2，𝜚 = 4，𝜇Liu = −1/2 

 
      (c) Inverse proportion extension：𝛼 = 𝛽 = 1/2，𝜚 = 1/4，𝜇Liu = −1/2 
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(d) Direct proportion extension: LFH, 𝜚 = 6  (e) Inverse proportion extension: HFV, 𝜚 = 1/6 

Fig. 25. Scaling fractal lattice circuits: Normalized case 

In the extreme frequency range, we have 

1

𝛼
𝑦(𝜚𝑤) ≈ 𝑦(𝑤)

   0←|𝑤|<1    
         

Low frequency
𝑦(𝑤) =

𝑤 + 𝛼−1𝑦(𝜚𝑤)

1 + 𝛼−1𝑦(𝜚𝑤)

   1<|𝑤|→∞   
→         

High frequency
𝑦(𝑤) ≈

𝑤

𝛼−1𝑦(𝜚𝑤)
.        (52) 

Therefore, in the low frequency range, by direct proportion extension, a regular scaling equation 

is approximately obtained and has an analytical Liu’s rough solution, that is 

𝑦(𝑤) ≈
1

𝛼
𝑦(𝜚𝑤) ⟹ 𝑦(𝑤) ≈ 𝜅𝑤𝜇Liu , 𝜇Liu =

lg 𝛼

lg 𝜚
,    

1 < 𝛼 < ∞

1 < 𝜚 < ∞
 .            (53) 

In the high frequency range, by inverse proportion extension, a quasi-regular scaling equation is 

approximated and has a peculiar analytical rough solution, 

𝑦(𝑤) ≈
𝛼𝑤

𝑦(𝜚𝑤)
⟹ 𝑦(𝑤) ≈ √𝛼/ 𝜚

4 𝑤
1
2 ,     

0 < 𝛼 < ∞

0 < 𝜚 < 1
 .                     (54) 

Here, after scaling extension, it is still half-order valid, and its operational order is independent of 

𝛼 and 𝜚! This is one of the reasons why we call equation (51) etc., as strange scaling equation. 

From this, we can also obtain a strange scaling equation which only deterimined by the scaling 

factor 𝜚, that is 

𝑦(𝑤) =
𝑤 + 𝑦(𝜚𝑤)

1 + 𝑦(𝜚𝑤)
.                                                         (55) 

The order-frequency characteristic curves of a set of actual solutions of the strange scaling 

equation (51) are shown in fig. 26. In fig. 26(c), when the number of iterations k is adjacent to an 

even number and an odd number, the phase of the operational oscillations in the approximation 

frequency band almost differ by π radians. Therefore, by taking advantage of this special property, 

the corresponding circuits of the two cases are connected in parallel, which will greatly cancel the 

operational oscillating effects. See the fine magenta curves in fig. 26(c). 
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(a) Before scaling extension           (b) Inverse proportion extension 

 

(с) Direct proportion extension: 𝜚 = √6, 𝜇Liu = lg𝛼 / lg 𝜚, 𝑦0(𝑤) = 1 

Fig.26. The order-frequency characteristic curves of a set of actual solutions of equation (49): 𝑦0(𝑤) = 1 

The strange scaling equations and their corresponding rational iterating processes have a 

lot of hidden content. 

6.4. Limit-asymptotic behaviors of scaling FACs and their Irregular scaling equations 

For scaling FACs, there is always, in general, an inherent quasi-periodic operational 

oscillating effect. This is because their corresponding irregular scaling equations, in mathematical 

form, can be written as follows: 

𝑦(𝑤) = 𝐹(𝛼±1𝑦(𝜚±1𝑤))
     𝑤=j∙10𝜛    
→         

𝑦(j∙10𝜛)=𝜂(𝜛)
 𝜂(𝜛) = 𝐹(𝛼±1𝜂(𝜛 ± lg 𝜚)).              (56) 

The period 𝑊 ∝ lg 𝜚 and the intensity (i.e., amplitude) of this operational oscillation are almost 

positively related to the scaling factor 𝜚. In the approximation frequency band, the oscillation 
is almost in the form of a sine wave with period 𝑊, and its amplitude can be analytically 
expressed very precisely in theory. 

The appearance of quasi-periodic operational oscillations in the approximation frequency 

band destroys the desired constant phase and constant order properties ! 

In order to reduce the operational oscillating effect (mainly to reduce the intensity), from 

the point of view of mathematical theory, it must meet 

𝑊 ∝ |lg 𝜚| → 0 ⟺  
𝜚 = 𝛼𝛽 → 1
𝛼 → 1, 𝛽 → 1

} .                                           (57) 

0 

−.5 

𝜇
𝑘
( 𝜛

)  

−1 

0 1 2 3 4 5 −1 

𝜛 

𝑊 

0 

−.5 

𝜇
𝑘
( 𝜛

)  

−1 

0 1 2 3 4 −4 −3 −2 −1 

𝜛 

𝐾

2
 

𝛼 = 𝜚 = 1 
𝑦0(𝑤) = 1 

𝜚 = 1/√6 
𝑦0(𝑤) = 1 

Operational oscillating period 

𝑊 = 2|lg𝜚| = lg6 

𝐾 = 2lg4 

𝑊 = 2lg𝜚 𝑊 = 2lg𝜚 

𝜚 = √6 

𝑘 = even 

𝜚 = √6 

𝑘 = odd 

0.5 

0.9 

0.1 

0.3 

0.7 

𝜇
𝑘
( 𝜛

)  

0.5 

0.9 

0.1 

0.3 

0.7 

𝜇
𝑘
( 𝜛

)  

−4 −2 2 −10 −8 −6 −12 0 −4 −2 2 −10 −8 −6 −12 0 

𝜇Liu = 0.9 

0.7 

0.5 

0.3 

0.1 

𝜇Liu = 0.9 

0.7 

0.5 

0.3 

0.1 

𝜛 𝜛 

𝑊 𝑊 



ЭЛЕКТРОНИКА   |   Электроника, фотоника и киберфизические системы. 2023. Т.3. №3. 

55 

Which will reduce the approximation benefit. Under the condition that Liu’s operational order 

relation is guaranteed, that is, 𝜇Liu = ± lg 𝛼 / lg 𝜚, the scaled circuit exhibits a limit-asymptotic 

behavior (LAB). 

For example, a Liu-Kaplan fractal chain FAC has the limit-asymptotic behavior shown in 

fig.6.6. In high frequency range, all the different operational orders in the low frequency, band are 

all conform to the half-order case! All order-roads lead to half-order. We are eager to see who can 

verify this theoretical conclusion experimentally, or find evidence in nature. 

The study of LAB of scaled FACs naturally leads to the physical realization and fabrication 

of fractal-order distributed parameter elements or components by analogical transformation. 

 

 
Fig. 27. Limit-asymptotic behavior (LAB) of Liu-Kaplan fractal chain circuit: normalized case 

6.5 Scaling extension and irregular scaling equations 

Some typical scaling extensions and their corresponding mathematical descriptions are 

listed in table 2. 
Table 2. Some typical scaling extensions and their mathematical representations 

Type and 

Name  

of FAC 

Immittance 

function 

Half-order 

iterating 

function 

𝐹(𝑥) 

Scaling 

extension 

rule 

Irregular 

Scaling Equation 

𝑦(𝑤) = 

𝐹(𝛼±1𝑦(𝜚±1𝑤)) 

Operational validity Scaling 

equation: 

Type, 

Name 

extension, 
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𝜇Liu, 𝑊 

M
o
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o
n

 f
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ct
al
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A

C
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Parallel 
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1

1 +
1
𝑤

+ 𝑥〉 𝛼 ∈ ℝ+ 

𝛽 ∈ ℝ+ 

𝛼 ≠ 1 

𝛽 ≠ 1 

1

1 +
1
𝑤

+
𝑦(𝜚𝑤)

𝛼
 

DPLF 

IPHF 

𝜇Liu =
lg 𝛼

lg 𝜚
 

𝑊 = |lg 𝜚| 
Hill 

scaling 

equation Series 

mode 

Impedance 

〈
1

1 + 𝑤
+ 𝑥〉 

1

1 + 𝑤
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la
n

 f
ra

ct
al

 c
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Carlson 

Fractal lattce 

Impedance 

2 + (1 + 𝑤)𝑥

1 + 𝑤 + 2𝑤𝑥
 

FF 

𝛼 ∈ ℝ+ 

𝛽 ∈ ℝ+ 

2 + (1 + 𝑤)𝛼𝑦(𝜚𝑤)

1 + 𝑤 + 2𝑤𝛼𝑦(𝜚𝑤)
 

DPLF 

IPHF 

𝜇Liu = −
lg 𝛼

lg 𝜚
 

𝑊 = |lg 𝜚| 

Lattice 

scaling 

equation 

Pu 

fractal tree 

2 + (1 + 𝑤)𝑥

1 + 𝑤 + 1𝑤𝑥
 

2 + (1 + 𝑤)𝛼𝑦(𝜚𝑤)

1 + 𝑤 + 𝑤𝛼𝑦(𝜚𝑤)
 Double 

scaling 

equation Yuan 

fractal tree 

1 + (1 + 𝑤)𝑥

1 + 𝑤 + 2𝑤𝑥
 

1 + (1 + 𝑤)𝛼𝑦(𝜚𝑤)

1 + 𝑤 + 2𝑤𝛼𝑦(𝜚𝑤)
 

Charef 

rational 

appro- 

ximation 

I 

Immittance 

〈
1 + 𝑤

1 +
𝑤
𝛼

𝑥〉 
𝛼 ∈ ℝ+ 

𝛽 ∈ ℝ+ 

𝛼 ≠ 1 

𝛽 ≠ 1 

1 + 𝑤

1 +
𝑤
𝛼

𝑦  
𝑤

𝜚
  

HF 

𝜇Liu = −
lg 𝛼

lg 𝜚
 

𝑊 = |lg 𝜚| Neoteric 

scaling 

equation 
D 〈

1 + 𝑤/𝛼

1 + 𝑤
𝑥〉 

1 +
𝑤
𝛼

1 + 𝑤
𝑦  

𝑤

𝜚
  

𝜇Liu =
lg 𝛼

lg 𝜚
 

𝑊 = |lg 𝜚| 

Square 

root’s 

Continued 

Fraction 

Expansion 

Ⅰ 1 +
𝑤±1

1 + 𝑥
 

𝛼 ∈ ℝ+ 

𝛽 ∈ ℝ+ 

1 +
𝑤±1

1 + 𝛼±1𝑦(𝜚𝑤)
 

𝜇Liu = ±
1

2
 

𝑊 = 2|lg 𝜚| 

𝜇Liu = ±
lg𝛼

lg 𝜚
 

Strange 

scaling 

equation 

Ⅱ 
𝑤±1

2 + 𝑥
 

𝑤±1

2 + 𝛼±1𝑦(𝜚𝑤)
 

Ⅲ 
𝑤±1 + 𝑥

1 + 𝑥
 

FF 

𝛼 ∈ ℝ+ 

𝛽 ∈ ℝ+ 

𝑤±1 + 𝛼±1𝑦(𝜚𝑤)

1 + 𝛼±1𝑦(𝜚𝑤)
 

Instructions 

〈𝐹(𝑥)〉 Invalid iterating 
Scaling feature parameter: 𝛼, 𝛽 

Scaling factor: 𝜚 = 𝛼𝛽 

𝜇Liu: Liu’s order 

𝑊: Operational oscillating period 

LF: Low-Frequency Validity; 

HF: High-Frequency Validity; 

FF: Full-Frequency Validity. 

DP: Directly Proportion Extension; 

IP: Inverse Proportion Extension. 
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МАТЕМАТИЧЕСКИЕ ПРИНЦИПЫ ПОСТРОЕНИЯ СХЕМ ФРАКТАНСНОЙ 

АППРОКСИМАЦИИ И ИХ ПРИЛОЖЕНИЯ 
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Аннотация: Данная статья написана к 100-летию со дня рождения Рашида Шакировича 

Нигматуллина. В начале 1960-х годов он впервые реализовал фрактальный элемент, 

выполняющий операции дифференцирования и интегрирования половинного порядка          

в электрохимии. В последние годы, когда теория и применение дробного исчисления стали 

горячей темой во многих областях, схемное и математическое моделирование сложных явлений 

и процессов дробного порядка, а также их физическая реализация и практическое применение 

схем и систем дробного порядка являются особенно важными и востребованными. 

Проектирование и построение схем фрактансной аппроксимации (СФА) являются эффективным 

методом реализации дробных операторов и дробных элементов. В этой статье мы представили и 

обсудили исследования и разработки в области СФА по следующим направлениям: 1)  пионеры 

в исследовании СФА; 2) основные понятия об элементах схем дробного порядка и СФА;         

3) фрактальные цепочечные схемы Олдема и их математические описания, некоторые 

классические фрактальные СФА половинного порядка; 4) математические основы анализа в 

частотной области – характеристики в частотной области и рабочие характеристики;           

5) фрактальные цепочки Лю-Каплана и их математические описания; 6) теория масштабного 

расширения и нерегулярные уравнения масштабирования. 

 

Ключевые слова: фрактальный элемент, фрактальный оператор, фрактанс, фрактор, фрактал, 

схемы фрактансной аппроксимации, рабочие характеристики, моделирование аналоговых схем, 

математическая рациональная аппроксимация, масштабное расширение, нерегулярные 

уравнения масштабирования. 
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