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Abstract: This article is written to commemorate the 100" anniversary of the birth of Rashid
Shakirovich Nigmatullin. He first realized the fractal element performing the differentiation and
integration operation of the half-order in electrochemistry in the early 1960s. In recent years, as the
theory and application of fractional calculus has become a hot topic in many fields, the circuit modeling
and mathematical modeling of complex fractional order phenomena and processes, as well as the
physical realization and practical applications of fractional order circuits and systems are particularly
important and urgent. Designing and constructing fractance approximation circuits (FACs) are an
effective technique to realize fractional operators and fractional elements. In this article, we will
introduce and discuss the research and development of FACs. The main contents are: 1) some pioneers
in the research of FACs; 2) basic concepts of fractional-order circuit elements and FACs;3) Oldham
fractal chain circuits and their mathematical descriptions, some classical half-order fractal FACS;
4) mathematical basis of the frequency-domain analysis—frequency-domain characteristics and
operational characteristics; 5) Liu-Kaplan fractal chain circuits and their mathematical descriptions;
6) scaling extension theory and irregular scaling equations.
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1. “Fractional Calculus” Theory and Application: Pioneers-Heroes Timing List®

This is a historical course map (Fig.1.1) that | started making around 2011. At that time, |
was writing a monograph, “Mathematical Principles of Fractance Approximation Circuits” [1],
which involved the collection of historical documents related to the theory and applications of
fractional calculus, and the need to organize and briefly summarize the research and development
history of these fields.

In this course of historical development, the brave pioneers are the most important. The
efforts and contributions of the pioneers are worth remembering and honoring. Therefore, | later
named this course map as “‘Fractional Calculus’ Theory and Applications: Pioneers-Heroes
Timing List”, and it was published in the “Annotated translation preface” of my annotated
translation book “Fractional Calculus: Theoretical Fundamentals and Introduction to
Applications” [2]. This book is translated from Igor Podlubny’s “Fractional Differential
Equations” [3].

In this historical course map, Rashid Shakirovich Nigmatullin has a clear place. His
outstanding contributions and achievements in many aspects, especially the discovery and
realization of half-order fractal elements in electrochemistry [4-11], have established his solid
position in the development and application of fractional calculus.

This is also an evolutionary map, that | have had to show many times every year in my
classroom teaching to the graduate students of related majors, in the College of Electronics and

@ In this section personal pronoun (1) coincides with the name of the leading author Yuan Xiao.
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Information Engineering of Sichuan University (in Chengdu, China) and the College of
Information Science and Technology of Tibet University (in Lhasa, China) for more than ten years.
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Fig. 1. “Fractional Calculus” Theory and Applications: Pioneers-Heroes Timing List

| often tell my students that in their study and scientific research, they should learn from
these brave pioneers, and have the courage to discover, to open up, to explore, and to innovate. It
is possible for researchers in any discipline to embark on the path of fractional-order and achieve
results. In particular, 1 will certainly mention the discoveries and contributions in the fractional-
order field, which were made by not-math-major-born researchers, such as Keith B. Oldham,
Rashid Shakirovich Nigmatullin, and others. Tell the stories of these pioneers, inspire students’
enthusiasm, enlighten students’ minds. So I also tell my students: All roads lead to fractional-
order!
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2. Fractional-order circuit elements and fractance
approximation circuits: basic concepts

2.1. Fractional-order circuit elements: Circuit symbols and their mathematical
representations

= Fractional-order element

Fractional-order circuit element (—FOE), or simply fractional element, is a class of circuit
elements or devices with fractional order differintegration capability (also known as operational
capability). That is, these devices are two-terminal devices with fractional-order impedance
(or admittance), and multi-terminal devices with fractional-order transfer functions
(i.e., fractional-order system functions).

Fractional-order impedance or admittance — Fractional-order immittance —
Fractance [12].

The simplest fractional element is the passive two-terminal fractional element, which we
call fractor. Fractor is a passive two-terminal fractional element with fractional-order immittance.

= Ideal fractor and non-ideal fractor
The input impedance function of an ideal x-order fractor is a fractance function, which is
defined by
V(s)

Z(“)(s) = m = 1(#)(5) =FWgn €))
where u is the operational order (0 < |u| <1, u € R), s =0 +j2 is the operational variable
(also called complex frequency variable, or Laplacian variable), F® is the lumped parameter of
the element which is called fractance quantity, referred to as fractance.

For an ideal fractor, F®® is a constant independent of the operational variable. We use the
circuit symbol shown in fig. 2(a) to represent the ideal fractor [1, 2]. The circuit symbol and its
definition for the non-ideal fractor is shown in fig. 2(b).

""""" Input impedance—Ideal u-order fractance function
Ideal + i(t) ) V(s) S[ unit: [F®W] = Qg
p~order V(t) F ZW(s) = ——= = [W(5) = FWH unit: [F®] = Qs

= 1(s) SI dimension: ML2T~3*#]~2

Circuit symbol Lumped parameter F®9,0 < |u| < 1 <Fractance

fractor Te—

...........

(a) Ideal fractor: circuit symbol and its definition, SI dimension and SI unit

Nom-ideal + &——=rE™ : Inputimpedance Non-ideal u -order fractance function
on-idea i(t) o V(is) . I®™(s) isan irrational function that contains or
u-order  v(t) ZW(s) = —= = [W(s) imatel tains fractional tor with
fractor ; 1(s) approximately contains fractional operator wi
—— ~ [W(s) order u (i.e., s*), which is not strictly equal to
Circuit symbol the ideal fractance function 1) (s) = F®Wsk,

(b) Non-ideal fractor: circuit symbol and its definition
Fig. 2. Fractors: circuit symbols, the input impedance functions

= Inductive fractor and capacitive fractor
A fractor which the operational order u inthe openinterval (—1,0) is called a capacitive
fractor, and is often called a fractional capacitor. And in contrast to this, is the inductive fractor,

u € (0,1).

Up to now, both ideal fractors and wideband non-ideal fractors are almost unavailable
devices.
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Therefore, a very natural idea is to use easily available integer-order elements, such as
resistors, capacitors, inductors, and active devices, and so on, to build a finite size two-terminal
circuit network in a certain frequency band to approximate the operational function of an ideal
fractor. We call this a fractance approximation circuit, abbreviated as FAC [1, 2].

2.2. Some pioneers in the research of Fractance Approximation Circuits

In Fractance Approximation Circuit (—FAC) field, the following researchers have made
pioneering contributions, which deserve our memory and highly esteem. They are

*1920s Oliver Heaviside: Discovered the —1/2 order RC distribution cable;
*1959  R.Morrison: Scaling fractal ladder, fractal chain, and two fractal chain circuits [13];
*1960s R Sh Nigmatullin: “recond” and “reind”, physically fabricated FOE [4-11];
*1960s G.E.Carlson: Carlson fractal lattice circuit, Carlson regular iterating approximation [14,15];
*1960s S.C.Dutta Roy: Distributed & lumped realizations, Circuit modeling by CFE and PFE [16,17];
*1970s K.B.Oldham: Semiintegral electroanalysis, half-order fractal chain circuit [18];
*1985  S.H.Liu, T.Kaplan: Liu fractal tree [19], Liu-Kaplan fractal chain circuit [20-21];
*1992  M.Nakagawa, K.Sorimachi: N-S fractal tree circuit [22];
*1997  C.Haba et al: Haba’s MOS fractal capacitors [23-25]

2.3. Fractance Approximation Circuits (FACs): Mathematical Descriptions

Figure 3 shows the relationship between the FACs and the fractors, and its approximation
process. This one-port passive (or active) circuit network with finite size k € N is called a
Fractance Approximation Circuit (FAC), which approximates to the ideal fractor in a certain
frequency range and under a given approximation precision.

Limit impedance

&—1 One-port
Ze(s) = passive k> o > Z({)}r Additional 1w (s) ﬁ Flg

circuit Rational Conditions
¢~ network Limiting ]
- . Nonideal Fractor Ideal Fractor
Fractance Approximation 0<lul <1 0<ul <1

Circuit (FAC)

Fig. 3. Fractance approximation Circuit and fractors—Mathematical principle of the FACs

In mathematical terms, a sequence of rational impedance functions {Z,(s)}xen IS
constructed to converge to the limit impedance function Z(s). This limit impedance function is
equaled to the irrational function 1®(s) of an ideal fractor directly or under some additional
conditions (such as in the low or high frequency range), namely,

M po .
Zk(s) _ Nk(s) _ Zcii:o bk,lS. k. Z(S) Addltllc.mal 1 (5) _ F(M)Sﬂ, (2)
Dy (S) Zifo QAg,i st lﬁ?ftlli?irrll?gl Conditions

where k is the number of FAC size or of iterations of an approximation algorithm, is also the
complexity of a FAC whose value is natural number: k € N, n;, and d, are the highest degrees
of the numerator and denominator polynomials, N, (s) and Dy (s) respectively.
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2.4. Basic mathematical properties of the impedance function sequences

The input impedance function sequence of a FAC and the rational approximation sequence
of a fractional operator, {Z,(s)},en, Must satisfy the following basic mathematical properties
[1, 2].

1) Computational Rationality

For the operational variable (that is, the independent variable) s inthe impedance function
Z (s), there can only be addition, subtraction, multiplication, division of four rational operations,
there should be no irrational operations. This is because it is necessary to avoid constructing new
fractance approximation circuits by use of fractors.

2)  Positive Reality Principle

This is a necessary condition for a causally stable system. That is, the basic requirements
of physical realization. Specifically, all its zeros and poles should be located in the left half plane
of the complex plane s.

3)  Operational Validity—Convergence and Limit Impedance Function
The rational function sequence converges and has

I!im Zi () =Z(s) = IW (s) = FWsk 0 < |ul < 1. 3

The limit impedance function Z(s) must have fractional-order operational performance
at least in a certain frequency range (or band). Therefore, the limit impedance or admittance
function must be an irrational function that contains or approximately contains fractional operator
with order u (i.e., s#).

The operational validity is the core problem of the fractance approximation circuit!

Mathematically, the operational validity is supported by convergence and limit immittance.

= ldeal approximation and non-ideal approximation

An approximation where the limit impedance function Z(s) is equaled to the ideal
fractance function 1 (s), is called an ideal approximation. That is Z(s) = I¥)(s).

An approximation that requires additional conditions (such as in high or low frequency

range) to make the above equation true or approximately equal, are called a non-ideal
approximations. That is Z(s) = I¥(s).
= Strong approximation and weak approximation

Ne(s)  So(s—z)

D) )

Z,(s) = k € N* (4)

If all zeros z; and poles p; of the rational approximation function Z,(s), lie on the
negative real axis of the operational complex plane s, z; € R™,i = 0~n, —1, p; ER™,j =
0~d; — 1, then this approximation is called a strong approximation, otherwise Rez; € R™,i =
O~n —1, Rep; ER7,j=0~d,—1, the rational approximation is called a weak
approximation.

2.5. Passive integer-order elements and fractional-order elements: circuit symbols
and Mathematical descriptions

Circuit symbols and their mathematical descriptions of some of the passive integer-order
and fractional-order circuit elements are listed in Table 1.
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Table 1. Integer-order elements and fractional-order elements:
Circuit symbols and mathematical descriptions
Element Circuit Lumped Impedance Operational |  Element
; e - Remark
name symbol parameter function Z(s) order u |Classification
— A(w) =1g|Z(j - 107)] o
{Sfri'.r?ﬁi NS 20y = /8) |0(@) =arg(zG-10m3 ] =V
- dA(w) .
element ——— 1) |y = A(@):
dw Amplitude-frequency
| —i Inductance B chara_cteristics, or
Idea L Zi(s) =Ls _ magnitude-frequency
Ind L (+1) n=+1 o
hductor | o dg = Ldi F&o =1 characteristics
- 0 (w):
ideal | Resistance |Z,(s) =R . Phase-frequency
Resistor R R = Rs p=0 characteristics
~— dv = Rdi FO =R M(w):
. Order-frequency
1 e
Ideal e Capacitance Zc(s) =— Integer- characteristics
Capacitor [ | T q —CCd FOD Cc_ﬂ n=-1 order
"""""" 1=y - element | Four fundamental
Memristor — : | Memristance circuit variables:
[26-28] } o M 7 ” Voltage v
—l . ¢ = Mdq Current i
Charge ¢q
Ideal — Transtance Magnetic-flux ¢
Transtor T T ?2? ?? flux-link
[29,30] | ¢ ¢ = Tdq (flux-linkage)
Ideal |e—=y"™ Ideal Slunit: [F®W] = Qs#
7MW () = FwWgu
,u—Order jF(H) Fractance I(”) ((S)) _ F(l‘) Sﬂ SI dimension: D|mF(l4)
fractor[1] | = FW) s)= S = MI2T-3+#]~2
I . . 0<|ul <1 . O<p<l:
Nonideal [*+3 "% | Nonideal |]®W(s) =~ [W(s) Fractional- | |nductive fractors
u-order = | Fractance Additional order —1<u<0:
fI’aCtOI‘ —i ... F ? Condltlon element Capac|t|ve fractors
Variable. | —=
order %’ 7 7 7
fractor[31]| e—
Frac | :
memristor EM&‘) ?? ?? ??
[32-34] |e—..
Notes Basic circuit variables: |Operational variable: s = o +j0
v, i, q, @. Frequency exponent: @ =1gN & 0 = 107

3. Oldham fractal chain circuits and their mathematical description

Oldham K. B. and Spanier J., in their famous book “Fractional Calculus” [17], proposed
and studied a Fractance Approximation Circuit with negative half-order operational performance
in a low-frequency range. In order to express our deep respect for Oldham’s pioneering research
work in the development and application of fractional calculus, we call such circuit Oldham type
| fractal chain circuit, or simply Oldham fractal chain circuit.
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3.1. Prototype circuit and iterating circuit

The original circuit first proposed by Oldham et al is shown in fig. 4(a). Obviously, we can
equivalently simplify this circuit to the iterating form shown in fig. 4(b), and call it an iterating
circuit.

1 : ...... ]

R | R | i R J_ i = Equlvalent i

Zu(s) > ¢ c= = kakaC S| = %)
T[r T: T i k e Nt N simplification ' Cs

......

Inltlal impedance Basw section

Z_1(5) Ba51c sectio

=

(a) Prototype circuit (b) Iterating circuit
Fig. 4. Oldham type | fractal chain circuit

3.2. Iterating algorithm and iterating function—Mathematization of the problem

Given any physically realizable rational initial impedance Z,(s) = Ny(s)/Dy(s), the
input impedance function sequence {Z,(s)}reny Of Oldham type | fractal chain circuit, can be
found from the iterating algorithm formula:

No(s)
Do (s)

Zy(s) = - Z(s) = Fo(Zx-1(s)),  k €N™. (5)

Where Fo(x) =R + " /

by the Oldham type | fractal chain circuit. Conversely, the iterating function Fy(x) also
mathematically fully characterizes its corresponding circuit entity. In this way, by investigating the
function Fy(x), it is easy to mathematically uncover the hidden secrets of the circuit. So we have
turned analogically a circuit problem into a mathematical problem.

Does this impedance function sequence {Z,(s)}reny CONverge?
To answer this question, we mathematize the problem. Take a =R, b =1/(Cs),
x, = Z,(s), and assume they are all positive real numbers, then

is a simple algebraic iterating function that is completely determined

(a e R", b € ]R’f)

%, € R* keN*. (6)

1
T = Fola-s),
_|_

Xo ER" > x, =a+

S =

Xk—1

If the positive real numerical sequence {x}iencOnverges, then the impedance function
sequence {Z,(s)}ren also converges! Because the iterating function of both is the same function

a € R",beR,xeR" )

1
Fo(x) =a+-——
o(x) =a (Electrlcal constraint: a # b

1.1

b x

3.3. Iterating plane and Convergence: iterating equation and limiting impedance
function

Based on iterating formula (6), the iterating planar graph is drawn, as shown in fig. 5.
So, we can also use plane geometry to study a circuit problem very intuitively. In particular, the
problem of convergence. Because

dFo(x) [ b 1 x € R*
dx _<b+x) < '(aER'l',bE]R"')'
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according to iteration theory, the corresponding numerical iteration process converges to a fixed
k—oo

point o € R, that is, x, = x, —— 1. The fixed point ry can be obtained from the simple
iterating equation

to find
2 e AT ab/a (8a)
T'O ) 5 .

Thus, the limit impedance function of the Oldham type I prototype circuit is

R R / 4
ZOI(S) = Ili_I)IOlOZk(S) =To = E+§ 1 +m. (8b)

So we also call ry the prototype fixed point, see Fig. 5.

a a 'l 4b
Vo = = % = b —
0 o' \l a

Prototype fixed point rg e
Treraung Y

Ideal fixed point
= | R
= Vab = -

\IC.s

a

n A o

A2

Fig. 5. Oldham Type | iterating curve and fixed points

What does this result mean? All already know this. It was this that has opened up a new
field of research for people in the 1960s.

3.4. Operational validity and non-ideal approximation

It has been pointed out above that operational validity is the core problem of the FACs!

Taket = RC, which is the time constant of the Oldham type I fractal chain circuit,
corresponding to the characteristic frequency 2, = 1/t. From this, investigating the limit
impedance Zy(s), there is obviously

R 1 0«|s|<Q; 0:<|s|->o
=52 e————— Zpy(s) ——— R. 9)
C Low-frequency range High-frequency range

This shows that Oldham type | fractal chain circuit has negative half-order operational
performance in a low-frequency range, such a circuit is called a low frequency valid negative half-
order fractal FAC. We say that this circuit has Low frequency validity.

Low frequency validity, in contrast, is high frequency validity.

Oldham type Il circuit (Fig. 6(c) shows its equivalent simplified iteration scheme) is a
negative half-order high frequency valid FAC. Its limit impedance Zg5(s) is easy to find and has
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1 0|s|<Q; 1++vV1+4RCs N;<|s|>
e Zoy(s) =
S Low frequency range

JR/Cs™ 12, (10)

Here we determine the operational validity by solving the simple iterating equation and
then investigating the operational performance of the circuit’s limit impedance.

2Cs High frequency range

Marked by impedance Marked by admittance Marked by impedance  Marked by admittance
(@)Type L: LFV (b) Type II: HFV (c) Type IlI: HFV (d) Type IV: LFV

Fig. 6. Oldham fractal chain circuit class: Equivalent simplified iterating circuits

Of course, there are other ways to determine the operational validity of a given fractal
circuit.

Recently, we have proposed a “Brief Analysis Method for fractal circuits” [35] which
directly determines the operational validity (or operational performance) of a given prototype
fractal circuit based on its topological structure.

Obviously, according to their limiting impedance, Oldham type I and III fractal chain
circuits are non-ideal approximation cases. By solving the zeros and poles of the impedance
function sequence, it’s also easy to verify that both of them are strong approximation cases.

3.5. Mathematical simplification of problems: Normalization and its mathematical
description

For the iterating algorithm formula (5), through normalization processing, that is,

Zk(S) — 14 1 Normalizating

7, (%)/R=1+ ! —, (1)

R 1 T=RC,1S=W RCs + -
Zi1 (T)/R

RCs + 5—=75
ST 7 (/R

and let s = w, Z, (%)/R = y(w)(normalized input impedance), we get a normalized iterating
algorithm
No(w)

yo(w) = W—U’k(w) = Fo1(yx-1(w)), k € N*. (12a)

Its normalized iterating function and normalized iterating equation are respectively

Foi(x) =1+ x = Fp(x). (12b)

w+1/x’
Its normalized limit impedance yqo,(w) (i.e., the normalized prototype fixed point ry,) is

1

+ =T 4w = rou. (13)

N[ =

Yo1(w) = ]11_{{)10 yi(w) =

N
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The normalized operational variable

AT L 14
W—‘L’S—QT ]QT—C jw. (14)

The advantage of normalization treatment is that it makes the study of real physical
problems more concise in mathematics, and helps people to more easily to investigate and reveal
the essential characteristics of the research object.

Obviously, we have [36] dimw=1 , [w]=1e[s]=Hz , dims=T""! ;
dimy,(w) =1, [y,W)]=1e[Z(s)] =Q, dimZ,(s) = L2MT3172. This is true for all
normalized variables!

The impedance of all elements or components in Oldham fractal chain circuits are
normalized by the resistance R, and the corresponding normalized iterating circuits are obtained,
as shown in fig. 7.

Obviously, these circuit diagrams, compared with fig. 6, fig. 7 are more concise.

Marked by impedance Marked by admittance Marked by impedance ~ Marked by admittance
(a)Type I: LFV (b)Type II: HFV (c)Type llI: HFV (d)Type IV: LFV

Fig. 7. Normalized Oldham fractal chain circuit class:
Equivalent simplified normalized iterating circuits

3.6. Improvement of prototype circuits: Improved circuits and their mathematical
descriptions

It is known that Oldham type | fractal chain prototype circuit is a low-frequency valid non-
ideal approximation. Consider the normalized case, see fig. 7(a) and fig. 8(a), we have (13), that
is

1 1
y01(w)=’1i_r)‘£>10yk(w)=5+5\/1+4/W=r01¢r1=vl/w. (15)

In order to reduce the difference, the fixed point 4, and r; = ,/1/w, the prototype circuit
must be modified. The simple improvement measure proposed by Oldham et al [18] is

1 1
r01—§=§,/1+4/w=rm, (16)

so that the improved fixed point rg7 is more closer to the ideal fixed point r; = \/1/w (see fig.
8(b)). Form this, we immediately obtain the improved circuit as shown in fig. 9(a), and its
corresponding iterating function and iterating equation, are respectively

1 1
St

1
§+x

x = Fo7(x) . (17)
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Xi—p

To

Ideal fixed point

T|=\/W

(a) Prototype fixed point and ideal fixed point

o1

Improved
fixed point

Ideal
fixed point

’-I = \,I,u 2
0 n Tol
X =

(b) Improved iterating curve and improved fixed point

Fig. 8. Oldham Type | fractal chain circuit—iterating curves and fixed points: Normalized cases

(b) Improved Type Il and I11: Non-ideal approximation, High frequency validity

Fig. 9. Improved Oldham fractal chain FACs: Normalized cases

Similarly, better approximation performance can be obtained by improving the other three
half-order valid Oldham fractal chain circuits (see fig. 6 and fig. 7). Their improved normalized
circuits are shown in fig. 9. But they are still negative half-order valid non-ideal approximations.
Therefore, a very natural question is: Are there ideal fractance approximation circuits in the full

frequency range?

The first full frequency valid ideal approximation FAC was the fractal lattice circuit (see
fig. 10), which was proposed by G. E. Carlson in 1960 [14].

-

___________

————————————

__________

<= yi(s)

Prototype circuit

1
Impedance

Vi (s)

[terating function
w 2+ (1 +wx
L Fel) = (1+w)+2wx
=
Iterating circuit

___________

Fig.10. Carlson fractal lattice circuit: Normalized case
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3.7. Classical half-order fractal FACs: Ideal approximation case — Full frequency
validity

So far, we have obtained 5 kinds of half-order ideal approximation FACs with full-
frequency validity. They are the fractal lattice circuit as shown in fig.10 proposed by G. E. Carlson
in 1960 [14], the fractal tree circuit as shown in fig.11 proposed by Nakagawa and Sorimach in
1992 [22], the fractal pyramid and fractal tree circuits as shown in fig.12 proposed by Pu Yifeli,
Yuan Xiao, Liao Ke et al. in 2005 [37-39], and the fractal tree circuit as shown in fig.13 proposed
by Yuan Xiao et al in 2013 [1, 40].

Prototype
circuit

A

Admittance
----- w— Vi (W)

Iterating circuit

..... yk(s) = FNS(yk—l(S))
W ,_E?—:::: Fas(6) = T + ——
w LA whx 1ty

Fig. 11. N-S fractal tree circuit: Normalized case

Iw_E::: Prototype — Iterating circuit
” circuit  [HFTEY A%
i F——— Admittance L1
- | w l_ —) ;
yk(W) Vi .—ﬁ___wll 1 e B i
w | I
| w—|__=|_-l=_|_l_l—|i— 9e(5) = Fex(74))
[ — 2+ (1 +whx
Fy(x) = TTwitwix
1 |_|£_ +wr+wix
Fig. 12. Pu fractal pyramid and tree circuits: Fig. 13. Yuan fractal tree circuit:
Normalized case Normalized cases

N-S fractal tree circuit and Pu fractal pyramid circuit, Pu fractal tree circuit and Yuan fractal
tree circuit are mutually dual circuits. Two FACs that are dual to each other have the same form of
iterating function (see section 6.5). All these five fractal circuits can be equivalently reduced to
simple iterating circuits, and then the corresponding iterating functions and equations can be
obtained. Their normalized limiting impedance or admittance are half-order operator!
Thatis lim y;c(w) e wit/z

4. Mathematical basis of the frequency-domain analysis: frequency-domain
characteristics and operational characteristics

4.1. FACs and fractional-order circuit systems: Mathematical representations

B System functions: Driving-point functions and transfer functions

In general, for a Fractance Approximation Circuit (FAC) with finite size k, it is expressed
by the driving-point functions (see fig.14(a)): impedance Z,(s) or admittance Y, (s); and for a
two-port Fractional-Order Circuit with finite size k, it is expressed by the transfer function (see
fig. 14(b)): H,(s). These functions are often uniformly called system functions.
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(a) One-port Fractance Approximation Circuit (b) Two-port Fractional-Order Circuit

Fig. 14. Mathematical representation of simple fractional-order circuit systems

An ideal constant p-order transfer function is defined as
HW(s) = TWsH, (18)

where T®is a lumped parameter, we call it the transfance [1, 2, 11]. This is the same formally as
the ideal p-order fractance function discussed in section 2.1, see eq. (1): 1®(s) = F®WsH, where
F® s called the fractance [1, 2, 11, 12].

B Normalization treatment and unified mathematical expression

Without loss of generality, in order to make the description and investigation of problem
more concise in mathematics, we can always carry out the following normalization processing and
further get a unified mathematical representation:

Z(s
System Yk &3 RY N (w)
functions * I | Dy(w)’

Hy (s) U'Ik (K)/T :) Normalized

system function

(19a)

(1909 )

)] =W izati -
Ideal I'# (S) = F\WgH ) Normalizating !F(M)/Tﬂ LL(“) (W) _ W“; (19b)
cases H(#)(s) =TWgu TS=w IH(H) (%) |

LT(M) JTh

Non — ideal [ (s)} Normalizating
_—

7w ~ (W —
cases H® () w) =W w) =wh. (19¢)

Additional conditions

s=w
In Section 3.5, normalizing the Oldham fractal chain circuits is a successful example.

4.2. Frequency response — Frequency-domain characteristics: Order-frequency
characteristics

When studying the signal analysis and processing ability of an analog circuit system, it is
usually carried out in the frequency domain.

B Frequency response: Amplitude-frequency characteristics and phase-frequency
characteristics

In the normalized system functions y,(w) and () (w), etc, take w = jw, we get the
frequence response:

o\ P (0 Ap(w) = |y (jw)] j=+v—-1
Vi) = A(@)e") {Pklzw) = arg’E}’k(jw)} <] w€R ) (202)
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AW (@) = |L(“)(ja))| = |w|H (i V1

. (2
PW(w) = arg{t(”)(jw)} = g,u sigw \ wEeR ) (20b)

(W () = AW ()PP @ o {

Where 4;(w) and A®W(w) are called amplitude-frequency (or magnitude-frequency)
characteristic functions, referred to as amplitude-frequency characteristics; P,(w) and P® (w)
are called phase-frequency characteristic functions or phase-frequency characteristics for short.

B Bode representation of the frequency response
In the field of engineering technology, Bode expressions and Bode curves are usually used
to better investigate and study the intrinsic properties of the system. That is, taking

w=10"ow=Igw, @ € R, w € R,
one get the amplitude-frequency characteristic functions in the form of double logarithmic coordinates
Ap(@) = 1g 4,(10%), AW (w) =1gAW(10%) = yw, w ER , (21)

we still call they the amplitude-frequency characteristics or magnitude-frequency characteristics;
and the phase-frequency characteristic functions in the form of single logarithmic coordinates
T

0, (@) = P,(10%), 0W(w) =PW(107) = - ®@ER, (22)

Constant Phase Property

we still call they the phase-frequency characteristics.

B Frequency response: Order-frequency characteristics

For fractional-order circuits and systems, especially, for FACs, the operational
characteristics are very important. About 15 years ago, after many considerations and experimental
verification, we proposed a new frequency-domain characteristic functions—order-frequency
characteristic functions or order-frequency characteristics for short, which is defined as [1, 2]

dA daw
p) = LD oy LDy e, (23)

Constant Order Property

They are used to describe the calculus operational capability and operational features of analog
circuits and systems, especially when emphasizing the analysis of operational performances.
Constant phase and constant order in the frequency-domain are the most essential
properties of constant order fractance approximation circuits or fractional-order circuits and
systems!
Order-frequency and phase-frequency characteristics, we unified called operational
characteristics.

4.3. Operational characteristics of first-degree metasystem
The normalized system function of a first-degree metasystem with negative real zero-pole
pair (z;, p;)is defined as [1, 2]

w—z w+10% <0iEIR§>

mi(w):w—pi_w+10)ﬁ Xi €ER

(24)

its phase-frequency characteristics 9;(w) and order-frequency characteristics u;(w) are
respectively
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sinh(—%1In ;) a; = 10% i = 7, /p,
9;(w) = arctan 2 ( l . l), 25a
(@) cosh((w —w;) - ln10) @; = (0; + x1)/2 (252)
(@) = arct sinh(ln «;) 25k
Uilw) = arctan cosh(2(w — @;) - In10) + cosh(ln ;) (25b)

Both of them have highly localization features, as shown in figure 14, that is, we have
i1 Z

f 9;(w)dw = Elgai, f u;(w)dw =lga;, (ai = p_> (26)

i

wWER weER

Where a; = 10°%7%i = z;/p; is zero-pole ratio. These conclusions are crucial to our research of
FACs!

ot 9, (@) \ u; (@)
— > — >
w (o)
- -1
2
(a) Phase-frequency characteristics (b) Order-frequency characteristics

Fig. 14. Operational characteristic curves of the first-degree metasystem

It is these localization features that provide a theoretical support for us to define the order-
frequency characteristic functions as (23), and at the same time, it is the mathematical theoretical
basis for us to understand and develop the FACs, and many valid rational approximation methods
of fractional operators!

4.4. Operational characteristics of Oldham fractal chain circuits: Non-ideal
approximation case

Consider the normalized Oldham improved type | and II fractal chain circuits. Its input
impedance sequence can be obtained and expressed analytically as [1, 2, 41]

k—oco
1 w -
Yo(w) = 0 - yp(w) = SVl+ 4/w coth <k - acosh (1 + 5)) % 1/w,  (27a)
k—oo

1 1 >00
Yo(w) =0 -y (w) = ﬁ\“ + 4w tanh <k -acosh (1 + ﬁ)) %n/l/w. (27b)

Of course, there are several effective algorithms for solving finite length {y,(w)},
especially numerical methods. In the field of FACs, calculating {y,(w)} is a very important
and necessary basic task. Accordingly, their characteristic curves in the frequency-domain are
plotted, as shown in fig. 15. In these graphs, the red dash straight lines corresponds to the case of
an ideal negative half-order fractor, that is w=/2,
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The K =1g4 in fig.15, we call the eigen K index or K index for short. The eigen K index
profoundly characterizes the approximation performance and iterating convergence performance
of the corresponding circuit [1, 2].

NN

Eigen K index
K =1g4

0

0 217 HFV non-ideal approximation

021

03~ Eigen K index

03

04

0.5

06

26’k(w)/77
2(9,\_( )/

07

08

ool LFV non-ideal approximation

-1

o1t HFV non-ideal approximation

02
Eigen K index
W K =lg4 —’IKl‘_

o7 —>‘ K ’4— Eigen K index K = Ig4 - 7
0.8 1 08
0s.  LFV non-ideal approximation | Bk
! 5 4 -3 2 -'1 0 1 2 12 1 0 1 2 3 4 5
w w

(b) Order-frequency characteristic curves: Improved type I, improved type Il

Fig. 15. Operational characteristic curves: Normalized Improved Oldham type I and 1T

4.5. Operational characteristics of Carlson fractal lattice circuits: FFV ideal
approximation

Consider the normalized Carlson fractal lattice circuit. Its input impedance sequences can be
obtained and expressed analytically as [1, 2, 41]

( 1 w+1 koo 1
!}’O(W) = - yor(w) = ﬁcoth k - acosh (m) W ﬁ
w+1

— _ 1 hl k h koo 1
l)’o(W)—OﬁySk(W)—ﬁtan ( - acos (ﬁ))ﬁ’ﬁ

Thus, the frequency-domain characteristic curves is drawn, as shown in fig. 16. In this FFV ideal
approximation case, the eigen K index K = 21g4.

Why are there such conclusions for the eigen K index of these half-order valid FACs? Can
anyone prove these mathematically and rigorously? As far as the author knows, this is a problem
that has not been solved yet! However, using the brief analysis method of fractal circuit, it can be
roughly obtained in a non-strict sense that the eigen K index are indeed so [35].

(28)
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Fig. 16. Frequency-domain characteristic curves: Normalized Carlson fractal lattice circuit
5. Liu-Kaplan fractal chain circuits and their mathematical descriptions

There is a hidden order everywhere, and mathematics can sometimes reveal it.
5.1. Fractal model for the ac response of a rough interface

In 1985, for a rough interface between two materials of very different conductivities, e.g.,
an electrode and an electrolyte, based on the morphological-geometric characteristics, S. H. Liu
cleverly and ingeniously proposed a fractal model, namely the regular Cantor fractal-bar model as
shown in figure 17(a). The analogical equivalent circuit of this fractal model (see figure 17(b)),
which takes into consideration the resistance in the two substances and the capacitance of the
interface, has the property of the so-called constant-phase element, i.e., a passive circuit element
whose complex impedance has a power-law singularity at low frequencies. The exponent of the
frequency dependence is related to the fractal dimension. The model also provides insight into the
conducting properties of the percolating cluster and the source of the 1/f noise in electronic
components [19].
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fractal chain circuits: (a) Regular Cantor fractal-bar model Morphology-geometric modeling;
(b) Circuit modeling —Liu fractal tree circuit; (¢) Liu-Kaplan fractal chain circuit; (d) Scaled
iterating circuit

To put it simply, the analogical equivalent circuit has the ability to realize arbitrary-order
fractional operators in the low frequency range by adjusting the element parameters and structure
parameters. In order to deeply express our respect for Liu, we called this circuit as the Liu’s
fractal tree circuit [1, 2].

5.2. Analogical transformation and equivalent simplification of problems and their
mathematical description—Irregular Liu-Kaplan scaling equation

B Analogical transformation and circuit modeling

By analogical transformation of physical objects, the equivalent modeling of the regular
Cantor fractal-bar interface into Liu’s fractal tree is a crucial first step. Its input impedance function
Z,(s), according to the circuit structure characteristics, can be directly written in finite irregular
continued fraction form,

1 v 1 v 1 v 1

VA =R+ .
k(s) Cs+aR +Cs+a?R+Cs +a3R + Cs+-.

(29)

B Mathematical equivalent transformation — Regular continued fraction and Liu-
Kaplan fractal chain circuit

Equation (29) can be equivalently transformed to regular (or simple) continued fraction
form,

Zy(s) =R+

1 1 1 1 1 (a =a/v € ]R+> (30)

Cs +aR + BCs + a?R + B?Cs+-.’ B =veER*
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From this, we obtain the Liu-Kaplan fractal chain circuit shown in fig. 17(c). Where, a = a/v,
we call the resistance progression ratio, and S = v, we call the capacitance progression ratio, they
are collectively referred to as the scaling feature parameters [1, 2].

B Mathematical equivalent simplification — Scaled iterating formula and scaled
iterating circuit
Further, Eq. (30) is simplified equivalently to scaled iterating form,

No(s) 1 +
0s ( k€N ) 31)

Z =——-/7 =R
O(S) D (S)_) k(S) +CS+ 1 ) Q:QﬁER+

aZy-1(es)

Where o = aff # 1, we call it the scaling factor. From this we draw the scaled iterating circuit
shown in fig. 17(d) [1, 2, 18-20]!

The three circuits in fig.17, namely the Liu fractal tree circuit, the Liu-Kaplan fractal chain
circuit and the scaled iterating circuit, are functionally equivalent!

5.3 Determination of the operational validity—L iu-Kaplan scaling equation and Liu’s
rough solution

B Limiting impedance and Liu-Kaplan scaling equation

The input impedance sequence {Z;(s)}ren, Which iterated from (31), if convergent, then
its limiting impedance Z;x(s) = limy_Z,(s) is found by the irregular scaling equation—L.iu-
Kaplan scaling equation

1 <a€R+,ﬁER+>
1 )

Z(s) =R+ 0 =af €R*

Cs+

(32)

aZ(ps)

We call this Liu-Kaplan scaling equation because it was first exactly derived by T. Kaplan et al. in
1985 [18-20]. So far, as far as the author knows, this is an irregular scaling equation that can not
be also solved analytically, or it is extremely difficult to solve analytically. Perhaps it is the author’s
solitary omissions, only shallow knowledge, sincerely seek the master to learn.

B Regular scaling equation and approach analytical solution —Liu’s rough solution
Form the circuit point of view, as in section 3.4 for the Oldham fractal chain circuits, see
expressions (9), (10), we have (let 2, = —

0«|s]<0; 1 0,<|s|>o0
aZ(ps) = Z(s) «¥—— Z(s) =R+

Low frequency

1 High frequency Z(S) ~ R. (33)

Cs+ —aZ(Qs)

This leads to a regular scaling equation in the low frequency range: Z(s) = aZ(ps). Thus, an
approach analytical solution— Liu’s approach solution is obtained [18] :

lga

- g0 (34)

Z1k(s) = Z1j,(s) = Kshuiu, HUiiu =

Where k is a scalar factor; pp;,, we call it Liu’s operational order, or Liu’s order for short; The
power function Zj;,(s) = ks*Liu is called Liu’s rough solution [1, 2] .

According to the operational characteristics of Liu’s rough solution, the operational validity
of the circuits described by the irregular scaling equation can be preliminarily determined. These
circuits are low frequency valid FACs, and more importantly, by adjusting the scaling feature
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parameters, i.e. a and [, one can get arbitary negative fractional-order FACs in the low
frequency range!
The Oldham fractal chain circuits have only negative half-order operational ability.

5.4 Normalization processing and the frequency-domain characteristics

B Normalization: Scaled iterating circuit and iterating function
Let T = RC, w = ts, the Liu-Kaplan fractal chain circuits (Fig. 17 (c), (d)) are normalized,
and the results are shown in fig. 18. The corresponding normalized iterating algorithm formula is

No(w)
= , k eNT, 35
ayx—1(ew)
rl—s @ r'1 """ )
1 1 § . ~
' | Pq | | Equivalent & Rational 2
Yie(w)i —=i ——=F Bl 1W \5 ':D}’k(w). 7 =>y(W) <
P W Ti 3WT T = T simplification | < limiting S
*—t—" T * P T S
(a) Prototype circuit (b) Scaled iterating circuit ~ (c) Irregular scaling equation circuit
Fig. 18. Normalized Liu-Kaplan fractal chain circuits
and the normalized Liu-Kaplan scaling equation is
1
y(w) = For(ay(ew)), Foi(x) =1+ —T (36)

W+}

This is an irregular scaling equation, and its corresponding circuit representation is shown in
fig.18(c), which is called an irregular scaling equation circuit. Here, its iterating function is exactly
the iterating function Fg,(x) that describes the Oldham (type 1) fractal chain circuit! See
expressions (6) and (12).

Fo1(x), this seemingly extremely simple function, is the key to unclocking our
understanding of the circuits it describes and their complex physical systems and processes.

[ | Frequency-domain characteristics: Negative half-order case and operational
oscillating effects

According to the algorithm formula (35), in MATLAB , it is easy to program, and to solve
numerically the finite-length input impedance function sequence {y,(w)}x=1~k. Thus, from this,
the frequency-domain characteristic curves are drawn for investigation and analysis.

Let’s first consider the case of Liu’s order

priw = —1/2,ie. a =B = o> 1. (37)

Some of the results are shown in fig.19.
By observing a large number of numerical experiment results, the following qualitative
conclusions are preliminary listed:
1) The value of the initial impedance y,(w) , affects the operational performance and
approximation performance in the very low frequency range.
2) A simple change in the circuit will improve the approximation performance and thus improve
the operational performance. This is similar to the Oldham fractal chain circuits.
3) In contrast to the Oldham fractal chain circuit, the Liu-Kaplan fractal chain circuit has a
deterministic periodic operational oscillating effect in the approximation frequency band (see

45



OJIEKTPOHUKA | DnekrpoHuka, poToHuka u kubdepdusuueckue cucremsl. 2023, T.3. Ne3,

the phase frequency and order frequency characteristic curves in fig. 19)! Its oscillating period
W =lgp, where o = aff > 1, is the scaling factor.

4) Here, the operational oscillating effects, break the constant phase property and constant order
property which is expected by the FACs!

4 T S T
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Fig.19. Frequency-domain characteristics: up;, = —1/2, ¢ = 10, yo(w) =1

Such periodic oscillation fluctuates in the approximation frequency-band around the
invariant characteristic horizontal line (i.e., red dashed lines in fig.19) of the ideal operator at Liu’s
order, i.e. kwHLiv y .. = —1/2. Why is this?

B Frequency-domain characteristics: General Negative fractional-order cases and
operational oscillating effects

Consider the case of Liu’s order up;, = —j/10 (j = 1,3,5,7,9) when scaling factor o
is given. The frequency-domain characteristic curves are drawn by y,(w), as shown in
fig. 20, 21.

For scaling fractance approximation circuits, in general, there is always an inherent quasi-
periodic operational oscillating effect [1]. Its oscillating period W = Igp. This is because for an
irregular scaling equation, such as Liu-Kaplan scaling equation (36), under logarithmic scale, we
have

1
¥(-107) = Fo, (ay(j-1074182)), y(-107) = 1 + ——.  (38)
W @G 1097

Therefore, the so-called quasi-periodic phenomenon here is also called log-periodicity in some
literature [8]. In the approximation frequency band, we have [1]
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Fig. 21. Frequency-domain characteristics: ¢ = 6, yo(w) =1, k=20
6. Scaling extension theory and irregular scaling equations

The design and fabrication of arbitrary real-order u (0 <|u| <1 ) fractance
approximation circuits (FACs) is the lofty goal of physical realization and application of ideal
fractional operator, or ideal fractance function

W) = FWer 2= 0 W) = wh (0<Iu|<1>
[¥(s) = F¥s Normalizatingl w) =w uEeER ' (40)

In the absence of fractional-order components, people can only try their best to achieve and

47



OJIEKTPOHUKA | DnekrpoHuka, poToHuka u kubdepdusuueckue cucremsl. 2023, T.3. Ne3,

synthesize (approximately) the operational performance of fractional operators by means of
existing elements, devices and technologies. Or observe and analyze a variety of (inorganic and
organic) materials, devices (or biological organs, tissues), complex real systems and their
behaviors, as well as a large number of fractional phenomena and processes occurring in physics
(especially nanophysics), chemistry, biology, medicine, engineering mechanics and other fields,
even if only within a certain frequency range, it is beneficial to establish the model of FACs.

6.1. Traditional methods of designing and constructing FACs
Historically, there have been two main paths to research and development of FACs.
M Analogical circuit modeling
In scientific and experimental research, FACs are modeled by use of analogical
transformation, equivalent simplification, and other means based on a large number of complex
real-world systems with fractional-order processes and phenomena. We call this method “the
analogical circuit modeling” [1, 2]. For example,
* homogeneous distributed RC networks,
* Oldham negative half-order fractal chain circuits [18],
* Liu’s fractal tree circuits [19-21],
* Nakagawa-Sorimach fractal tree [22],
* Haba fractional capacitors [23-26],
etc., are very convincing typical results in the analogical circuit modeling.

EMathematical rational approximation
Based on a variety of mathematical techniques, within a certain frequency range, the
physical realizable rational approximation function sequence of the fractional operator is first
theoretically carried out, and then transformed into a practical circuit (especially passive circuit
networks) [1]. For example,
* Carlson half-order fractal lattice circuit [14],

* Carlson +1/n-order regular iterating algorithm [15],
* Dutta Roy continued fraction expansion [16, 17],
* Charef arbitrary order method [42-45],
* Matsuda log-frequency point CFE method [46],
* Qustaloup zero-pole construction method [47],
and so on are the models of mathematical rational approximation.

Is there a third way to building new type of FACs? In particular, new arbitrary-order valid
FACs!

6.2 Scaling extension theory and its mathematical descriptions

Comparing Low Frequency Valid half-order Oldham type I and arbitrary-order Liu-
Kaplan fractal chain circuits shown in fig. 22, and the beautiful iterating equations describing them
(normalized cases):

Oldham: Half-order valid Liu-Kaplan: Arbitrary order  Shared iterating function

1
y(w) = FOl(y(W))' y(w) = F01(ay(gw)), Foi(x) =1+ —T

Algebraic iterating equation Irregular scaling equation w + E
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Yi—1(W)
y(w)

yw) |

________

ayr-1(0w)
ay(ow)

cese

(a) Prototype circuits (b) Simple iterating circuits  (c) Iterating equation circuits

Fig. 22. Normalized Oldham type | and Liu-Kaplan fractal chain circuits:
l1<a<ow, 1< <o, p=ap.
BmScaling extension: Basic concepts and their mathematical descriptions
According to the above comparative investigation. it is very easy to see that Oldham type
[ is a special case of Liu-Kaplan fractal chain circuits (i.e., « = 8 = ¢ = 1), and Liu-Kaplan
fractal chain circuit is a generalization of Oldham type I , we call this scaling extension [48, 49] !
The corresponding mathematical statement is that the half-order valid algebraic iterating equation
is scaled to become (possibly) an arbitrary-order valid irregular scaling equation (considering the
normalization case):

Scaling extension

yw) = Flyw))————— y(w) = F(a*'y(e*'w)). (41)
half—order valid 0<ﬁ<oo: B=1 arbitary—order valid
iterating equation o=af#1 irregular scaling equation

Where a and g are still called scaling feature parameters, and o = aff # 1 is scaling factor.

W Low-frequency validity and direct proportion extension
In fig. 22, for the half-order low frequency valid (LFV) FAC, after scaling extension, it is
still a low frequency valid arbitrary FAC, but the following conditions must be met:

1<a<om 1<f <o 1<p=af <oo, (42)

Scaling extension that satisfies condition (41) is called direct proportion extension (DPE).

By direct proportion extension of the improved Oldham fractal chain circuit (see fig.9(a),
and expression (17)), which is a half-order low frequency valid (LFV) circuit, we obtain a new
scaled fractal chain circuit as shown in fig.23(a), which is still a LFV, but has an arbitrary
operational order, namely Liu’s order y;;, = —lga /lge. The scaling equation describing this
scaled circuit is irregular, i.e.

y(W) = Foi(ay(ew)) = ; + ——=— (6.4)

T
Ftay(ew)

| i | Subsection |
o1 1

w

L 4 T 1

y(w)

. Yo (W)

______________

(a) LFV — direct proportion extension - LFV: 1 <a <o, 1 <f < o0, p =af
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———————————————

12 | 172 172 | 120 172 12 ~
W) Wl w | Biw ﬂl_wi pE-tw Lk-1w \E;
1 g i k-1 =

a

(b) HFV — inverse proportion extension > HFV: 0 <a <1, 0<f <1, o=aff

Fig. 23. New scaling circuits — Improved Oldham fractal chain circuits after scaling extension:
Normalized case

B High-frequency validity and inverse proportion extension

By scaling the half-order high frequency valid improved Oldham fractal chain circuit (see
fig. 9(b)), we get a new scaled fractal chain circuit as shown in fig.23 (b), whose scaling equation
is

(w) : + ! (44)
yw) =— .
2w 1

1
7w T ay(ew)

Obviously, this is an irregular scaling equation which is difficult or impossible to solve
analytically. Maybe we need to introduce a new special function? However, in the high
frequency range, a regular scaling equation can be approximated with Liu’s rough solution:

yw) = ay(ow) = y(w) = yj(w) = kwhtin, = —lga/lgo. (45)

This conclusion shows that the corresponding circuit should be a high frequency valid scaled FAC!
Why do we say “should be” here? Because for the scaled circuit to be valid in the high
frequency range, the following conditions must be met:

0<a<1l,0<p<], 0<g=af<1. (46)

Otherwise, each subsection of this scaled circuit will operate in the low frequency band showing
negative first-order operational performance (i.e., almost pure capacitive operational performance),
and in the high frequency band is showing resistive operational performance!

Scaling extension that satisfies condition (44) is called inverse proportion extension (IPE).

Now, we can preliminarily summarize the following conclusions:

LFV—direct proportion extension—LFV;

HFV—inverse proportion extension—>HFV.

W Full-frequency validity and scaling extension
So far, we have obtained five Full Frequency Valid (FFV), ideal approximation half-order
FACs:
* Carlson fractal lattice circuit (1960, Carlson G.E., see fig.10) [14],
* Nakagawa-Sorimach fractal tree circuit (1992, Nakagawa M., Sorimach K., fig.11) [22],
* Pu fractal pyramid circuit (2005, Pu Yifei, Yuan Xiao,et al, fig.12) [37],
* Pu fractal tree circuit (2005, Pu Yifei, Yuan Xiao, et al, fig.12) [38, 39],
* Yuan fractal tree circuit (2013, Yuan Xiao et al, fig.13) [1, 40].

Considering negative half-order, FFV Carlson fractal lattice circuit (see fig.10), its
scaling extension case is shown in fig.24. The irregular scaling equation corresponding to this
scaling circuit,
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1/w (Bw)~1 B tw)t 1/w 1/w
1 1
( ) (Zk_l y (W)l § k—o0 ( ) 1 g
- == y(w &
yk w 1 ak_l yO (W) k 1 é\ y 1 §\
L 11 1 S
1/w Bw)™* (B 1w)~? 1/w 1/w
(a) Prototype circuit (b) Scaled iterating circuit and scaling equation circuit

Fig. 24. Scaled fractal lattice circuits: Normalized case

which we call the lattice scaling equation, [2, 40, 50] is

2+ (14 w)x (a;tl,[)’;tl)'

(1+w)+ 2wx o=ap #1 (47)

y(w) = Fe(ay(ow)), Fe(x)=

According to the structure of the scaling fractal lattice circuit, lattice scaling equation (47) is
approximately solved, and Liu’s rough solution is obtained:

. lga
YO = Y ) = whie, gy = =
From this we can conclude: direct proportion extension—LFV; inverse proportion
extension—>HFV.

Using Liu’s rough solution can only preliminarily judge the operational validity. The actual
operational characteristic curves of the scaling lattice circuit are shown in Fig.25!

6.3. Continued fraction expansion approximations for half-order operator and strange

scaling equations
Consider the mathematical basis of the ancient Continued Fraction Expansion approximations

of square root — classical identity relations:

( +1
Vitwil=14—o
14+ V14wt
wit
{V14+wil—1= , 48
2+V1i4+wil—1 (+8)
- wH +vwt!
wr = —mm—,
\ 1+ Vwil

Of course, there could be other identities. Let v1+w*l =y(w), v1+wil —1=y(w)

(to non-ideal approximation), andvw*! = y(w) (to an ideal approximation) respectively, we
obtain three simple, half-order valid algebraic iterating equations:

y(w) = Fere1(y(W)), y(w) = Fepga(y(W)), yWw) = Fepps(y(w)); (49)

+1 +1 wil + x
F, x)=1+ , F, X)) =——
crEz (%) 1+ x cres (X) 1+x

F, =1+ ,
crE1(X) 1+ x

It is easy to verify that the three iterating processes thus constructed satisfy the
computational rationality and positive reality principle. Their operational validity is self-evident!
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In mathematics, by direct scaling extension, we get three sets of irregular strange scaling

equations:

witl
1+atly(ow) °

y(w) = Fepps (@y(ow)) =1+

wil

2+ atly(ow)”’

y(W) = Feppa(at'y(ew)) =

wil + atly(ow)
1+ atly(ow)

y(w) = FCFES(aily(QW)) =

(50a)

(50b)

(50c)

As we shall see, these three sets of equations contain very rich connotations and also have

some unusual characteristics. For example, to select (50c), consider the following equation:

w) =" +a” "y (ew)
w) = .
Y 1+ aly(ow)
0 Eigen‘ K index | |
L K/2 ~N AN S o Lo /A i
_ . K =2lg4 |<i>| \%// W o 1
B
R A AVAT A A N O YA Sy
L 74 |
r Bc[k]—> i
A N/ Y o () A ¢
N %
_1 JJJJQ/ L L 1 1
-5 -4 -3 -2 -1 0 1 2 3 4 5
(a) Before scaling extension: a =8 =1, u=-1/2
0 ; : , ,
L |<y)| Operational oscillating |
0 period W = lgo 2
< —05F------/-- Al S AN S
3 - o i = —1/2
BN ELYAR YR YA, ~ Scaling factor: o = 4 i
N
1 a=2p=2 ‘
-5 -4 -3 -2 -1 0 1 2 3 4 5
w
(b) Direct proportion extension: a = =2, 0 =4, uyy, =—1/2
0 [ ol
- Operational oscillating
3 period W = |lgo| = 1g4 .
E o5 QAL i
E R ‘ KD
_ Scaling factor: o =1/4 /4 i
L a=p=1/2 — |
-5 -4 =3 -2 -1 0 1 2 3 4 5

(c) Inverse proportion extension: a = =1/2, 0 =1/4, py, = —1/2
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2 0 2 4 6 8 10
w w
(d) Direct proportion extension: LFH, o = 6 (e) Inverse proportion extension: HFV, o = 1/6

Fig. 25. Scaling fractal lattice circuits: Normalized case
In the extreme frequency range, we have

0-|wl<1 _wtaly(ow) 1<iwlow

_y(QW) ~ y( ) Low frequency y(W) 1+ (X_l}’(QW) High frequencyy w) ~ a_1Y(QW).

(52)

Therefore, in the low frequency range, by direct proportion extension, a regular scaling equation
is approximately obtained and has an analytical Liu’s rough solution, that is

lga <1<a<00)

5o’ (1<p<co) (53)

1
y(w) = EY(QW) = y(w) = kwhtiv,  ppp, =

In the high frequency range, by inverse proportion extension, a quasi-regular scaling equation is
approximated and has a peculiar analytical rough solution,

= yow) = Va/yawz,

(54)

y(w) ~ O<a<00>

(Q) 0<o<1

Here, after scaling extension, it is still half-order valid, and its operational order is independent of
a and p! This is one of the reasons why we call equation (51) etc., as strange scaling equation.
From this, we can also obtain a strange scaling equation which only deterimined by the scaling
factor o, thatis

w + y(ow)

yw) = 1+y(ow)

(55)

The order-frequency characteristic curves of a set of actual solutions of the strange scaling
equation (51) are shown in fig. 26. In fig. 26(c), when the number of iterations k is adjacent to an
even number and an odd number, the phase of the operational oscillations in the approximation
frequency band almost differ by = radians. Therefore, by taking advantage of this special property,
the corresponding circuits of the two cases are connected in parallel, which will greatly cancel the
operational oscillating effects. See the fine magenta curves in fig. 26(c).
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Operational oscillating period
W = 2|lge| = 1g6

-4 3-2-10 12 3 4 21 0o 1 2 3 4 5

w w

(a) Before scaling extension (b) Inverse proportion extension
0.9 DR S S A— 0=v6 _ 0.9 R RN T e=v6 -
| Ui = 0.9 k = even | g = 0.9 k =oddf |
0.7 A Ao R - 0.7 WO ¥ WHOREN
07 w ] I 0.7
0 e B —>|WI<—

— 05 = \__; 05 =7
£ I 0.5 [ 0.5 |
0.3 o At M 0.3 N ALY
| 0.3 | I 0.3 |
0.1 AW = 21go -\ - 0.1 NSO W = 2lgo--4-
-12 -10-8 -6 -4 -2 0 2 -12 -10-8 —6 —4 -2 0 2

w w

(c) Direct proportion extension: ¢ = V6, u.i, =lga/lgo, yo(w) =1

Fig.26. The order-frequency characteristic curves of a set of actual solutions of equation (49): y,(w) =1

The strange scaling equations and their corresponding rational iterating processes have a
lot of hidden content.

6.4. Limit-asymptotic behaviors of scaling FACs and their Irregular scaling equations

For scaling FACs, there is always, in general, an inherent quasi-periodic operational
oscillating effect. This is because their corresponding irregular scaling equations, in mathematical
form, can be written as follows:

w=j-10%

— F +1 +1
y(w) (“ y(o W))ym)

n(@) = F(a*'n(w t1g0)). (56)
The period W « Igp and the intensity (i.e., amplitude) of this operational oscillation are almost
positively related to the scaling factor g. In the approximation frequency band, the oscillation
is almost in the form of a sine wave with period W, and its amplitude can be analytically
expressed very precisely in theory.

The appearance of quasi-periodic operational oscillations in the approximation frequency
band destroys the desired constant phase and constant order properties !

In order to reduce the operational oscillating effect (mainly to reduce the intensity), from
the point of view of mathematical theory, it must meet

=af -1
W« [lgo| 0 ‘:’{5—> 153 - 1}. (57)
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Which will reduce the approximation benefit. Under the condition that Liu’s operational order
relation is guaranteed, that is, uy;, = +lga /lge, the scaled circuit exhibits a limit-asymptotic
behavior (LAB).

For example, a Liu-Kaplan fractal chain FAC has the limit-asymptotic behavior shown in
fig.6.6. In high frequency range, all the different operational orders in the low frequency, band are
all conform to the half-order case! All order-roads lead to half-order. We are eager to see who can
verify this theoretical conclusion experimentally, or find evidence in nature.

The study of LAB of scaled FACs naturally leads to the physical realization and fabrication

of fractal-order distributed parameter elements or components by analogical transformation.

-10

-5
@

0 5

20,75 (@)

]

Fig. 27. Limit-asymptotic behavior (LAB) of Liu-Kaplan fractal chain circuit: normalized case

6.5 Scaling extension and irregular scaling equations

Some typical scaling extensions and their corresponding mathematical descriptions are
listed in table 2.

Table 2. Some typical scaling extensions and their mathematical representations

Half-order . Irregular Operational validity Scaling
Tpr;r::d Immittance iterating eifearll!sri]gn Scaling Equation - equation:
of FAC function function rule yw) = extension, i W Type,
F(x) F(a*ly(ot'w)) valid band Liw Name
@ 1 ylew) lga
Parallel . - + o =2
2 arade Admittance ( 1 +x) | a€ ]R+ 1 + a Hiiu lgo Hill
| mode 1 +W BER 1 +W DP—LF W =|lgo| | scaling
% Series 1 Z :Z 1 1 IP—HF equation
‘*z mode (1 T + x) —1 Tw + ay(gw)
3 1 LF—DP
= 14— 1+ _ lga
S I 1| 1<a 1 DP—LF |upjy = ——
Impedance = _ u 1
=| g P Wty | 1< YT aylew) W= ligel
S 1 N 1 1 N 1
8 w w 1 Liu-
S | I w 1 Wl —
S L+3 | HFIP ay(ow) Kaplan
— = 0<a<l1 IP—HF :
< 1 1 scaling
= 1+—— [0<B=1|1+4 !
< 1,1 1 a quation
X I w T x w + y(ow) = lg_a'
= Admittance Hriu =155
3 1 LF—DP 1 W= ligol
I\ W+1— 1<a |WTT @ DP—LF
tx | 1<p y(ow)
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Carlson 2+ (1 +wx 2+ 1+ way(ew) ;:?:ilgg
Fractal lattce 14+ w4+ 2wx 1+ w+ 2way(ow) equation
FF Ig o | SGUATION.
Pu Impedance |2+ (1 +w)x| geRrt |2+ +way(ew) I|DPP_)|-II_FF e = Tgy
fractal tree 1+w+1wx| BERY | 1+w+way(ow) - W = |lgo| igTibrlls
Yuan 1+ (1 + W)X 1+ (1 + W)“}’(QW) equation
fractal tree 1+w+ 2wx 1+ w+ 2way(ow)
<1 +w ) 1+w (w o _lga
Charef | | wX a € R* wY <_) " lgo .
. 1+— 1+— \@
rational a B € R* a W = |lgo| Neoteric
appro o %1 HF g scaling
. w '
Ximation D 1+ W/ax ﬁ *1 1+ Ey (K) ULiu @ equatlon
1
w 1+w” e W = llgel
| | 'mmittance - wit - wtt
Square 1+ x a€E ]R+ 1+ aily(QW) ULiu = il
root’s I wil B € R* wil 2 Strange
Continued 7t x 2+ atly(ow) W =2llgel scaling
Fraction FF lga equation
- +1 +1 +1 ,u i T
Expansion 1 wrt + x 2 € R wrt + atty(ow) Liu Igo
1+x gert | 1+a*ylew)
- . Scaling feature parameter: a, B |uLi.: Liu’s order
(F(x)) Invalid iterating Scaling factor: ¢ = af8 W Operational oscillating period
Instructions LF: Low-Frequency Validity; DP: Directly Proportion Extension;
HF: High-Frequency Validity;  IP: Inverse Proportion Extension.
FF: Full-Frequency Validity.

w

10.

References

Yuan Xiao. Mathematical Principles of Fractance Approximation Circuits, Beijing, Science
Press, 2015. (in Chinese)

Yuan Xiao. Fractional Calculus: Theoretical Fundamentals and Introduction to Applications,
Beijing, Electronic Industry Press, 2021, (in Chinese) annotated translation from Igor
Podlubny’s Fractional Differential Equations, San Diego, Academic Press, 1999

Podlubny I. Fracrional Differential Equations, San Diego, Academic Press, 1999
Nigmatullin R.Sh., Belavin V.A. Elektroliticheskij drobno differenciruyushchij i
integriruyushchij dvuhpolyusnik [Electrolyte fractional differential and integration two-pole
element]. Pros. of Kazan Aviation Institute (KAI), Issue 82, Radiotechnics and electronics,
1964, pp.58-65. (in Russian)

Nigmatullin R. R. To the theoretical explanation of the “universal response”, Phys. Stat. Sol.
(b), 1984, 123, pp.739-745.

Nigmatullin R. R. On the theory of relaxation for systems with “remnant memory”. Phys.
Stat. Sol. (b), 1984, 124. pp. 389-393.

Nigmatullin R. R. The realization of the generalized transfer equation in a medium with
fractal geometry, Phys. Sta. Sol. (b), 1986, 133, pp. 425-430.

Nigmatullin R. R. Fractional integral and its physical interpretation. Soviet J. Theor. And
Math. Phys., 1992, 90(3), pp.354-367.

Hill R.M., Dissado L. A., Nigmatullin R.R. Invariant behavior classes for responses of simple
fractal circuits, Journal of Physics Condensed Matter, 1991, 3, pp. 9773~9790.

Valério D., Machado J.T., Kiryakova V. Some pioneers of the applications of fractional
calculus. Fractional Calculus & Applied Analysis, 2014, 17, pp. 552-578.

56



OJIEKTPOHUKA | DnekrpoHuka, poToHuka u kubdepdusuueckue cucremsl. 2023, T.3. Ne3,

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.
29.

30.

31.

32.

33.

GilI’mutdinov A. Kh., Ushakov P. A., EI-Khazali R. Fractal elements and their applications.
Springer International Publishing, Switzerland, 2017.

M¢éhauté A.L., Crépy G. Introduction to transfer and motion in fractal media: the geometry of
kinetics. Solid State lonics, 1983, 9-10, pp.17-23.

Morrison R. RC constant-argument driving-point admittances, IRE Trans. on Circuit Theory,
1959(9), pp. 310-317.

Carlson G.E., Halijak C. A. Simulation of the fractional derivative operator /s and the
fractional integral operator1/+/s. Kansas State University Bulletin, 1961, 45(7), pp. 1-22.
Carlson G.E., Halijak C. A. Approximation of fractional capacitors (1/s)/™ by a regular
Newton process, IER Trans. On Circuit Theory, 1964, 11(2), pp. 210-213.

Dutta Roy S.C., Shenoi B.A. Distributed and lumped RC realization of a constant argument
impedance, J. of the Franklin Institute, 1966, 282(5), pp. 318-329.

Dutta Roy S.C. On the realization of a constant-argument immittance of fractional operator,
IEEE Trans. on Circuit Theory, 1967, 14(3), pp. 264-374.

Keith B. Oldham, Jerome Spanier. The Fractional Calculus: Theory and applications of diff-
erentiation and integration to arbitrary order, Academic Press, New York and London, 1974.
Liu S.H. Fractal model for the ac response of rough interface, Phys. Rev. Lett., 1985, 55,
pp. 529-532.

Kaplan T., Liu S.H. and Gray L.J. Inverse-Cantor-bar model for the ac response of a rough
interface, Phys. Rev. B, 1986, V.34, pp. 4870-4873.

Kaplan T., Gray L.J., Liu S. H. Self-affine fractal model for a metal-electrolyte interface,
Phys. Rev. B35, 1987, pp.5379-5381.

Nakagawa M., Sorimachi K. Basic characteristics of a fractance device, IEICE Trans.
Fundamentals, 1992, E75-A (12), pp. 1814-1819.

Haba C., Ablart G., Camps T. The frequency response of a fractal photo- lithographic structure,
IEEE, Trans Dielectrics Electric Insul, 1997, V.4 (3), pp. 479-490.

Haba C., Ablart G., Camps T., Olivie F. Influence of the electrical parameters on the input
impedance of a fractal structure realized on silicon, Chaos, Solitons Fractals, 2005, 24,
pp. 479-490.

Haba C., Loum G., Ablart G. An analytical expression for the input impedance of a fractal
tree obtained by a microelectronic process and experimental measurements of its non-integral
dimension, Chaos, Solitons Fractals, 2007, 33, pp. 364-373.

Chua L.O. Memristor - the missing circuit element, IEEE Trans. Circuit Theory, 1971, CT-
18(5) pp. 507-519.

Chua L.O., Kang S.M. Memristive devices and systems, Proc. IEEE, 1976, 64(2), pp. 209-
223.

Chua L. O. The Fourth Element, Proceedings of the IEEE, June 2012, 100(6) pp.1920-1927.

Shang Dashan, Chai Yisheng, Cao Zexian et al. Toward the complete relational graph of

fundamental circuit elements, Chin. Phys. B, 2015, V.24, N6, 068402.

Jianxin Shen, Junzhuang Cong, Yishen Chai et al., Nonvolatile memory based on nonlinear

magnetoelectric effects, Physical Review Applied, 6 021001(2016).

YuB.,PuY., HeQ., Yuan X. Circuit Implementation of Variable-Order Scaling Fractal-Ladder

Fractor with High Resolution, Fractal and Fractional, 2022, 6, 388.

https://doi.org/10.3390/fractalfract6070388

Pu Y.F, Yuan X. Fracmemristor: Fractional-Order Memristor, IEEE Access, 2016, \ol. 4,

pp.1872-1888.

Pu Y.F., Yuan X., Yu B. Analog Circuit Implementation of Fractional-Order Memristor:

Arbitrary-Order Lattice Scaling Fracmemristor, IEEE Trans. Circuits Syst. | Regul. Pap.,
57



https://doi.org/10.3390/fractalfract6070388

OJIEKTPOHUKA | DnekrpoHuka, poToHuka u kubdepdusuueckue cucremsl. 2023, T.3. Ne3,

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

2018, 65, pp.2903-2916.

Pu Y.F, Yu B., Yuan X. Ladder Scaling Fracmemristor: A Second Emerging Circuit
Structureof Fractional-Order Memristor, IEEE Des. Test, 2021, 38, pp.104-111.

DengY., Yuan X. Theoretical basis and applications of fractal fractance circuit brief analysis
method [J]. J Sichuan Univ: Nat Sci Ed, 2023, 60: 013002.

Yuan Zi., Yuan Xiao. On Zero-Pole distribution of regular RC fractal fractance approximation
circuits, Acta Eletron. Sin., 2017, 45(10), pp.2511-2520.

PuY.F., Yuan X, Liao K. et al. Arecursive net-grid-type analog fractance circuit for any order
fractional calculus, Proc. of IEEE International Conference on Mechatronics and Automation,
Canada: IEEE, 2005, pp.1375-1380.

Pu Yifei, Yuan Xiao, Liao Ke et al. Structuring Analog fractance circuit for 1/2 order fractional
calculus, Proceedings of ASICON, 2005, IEEE, Oct. 2005, pp.1136-1139.

Pu Yifei, Yuan Xiao, Liao Ke, Zhou Jiliu. Implement any fractional order multiplayer
dynamics associative neural network, Proceedings of ASICON, Oct.2005, IEEE, pp.789-793.
Yue-Rong Zhang, Qiu-Yan He, Xiao Yuan. Classic Scaling Fractal Fractance Approximation
Circuits: Optimization Principle Analysis and Method, Circuits, Systems, and Signal
Processing, https://doi.org/10.1007/s00034-020-01606-4

Gao Xiaolong, Yuan Xiao, Shi Buchun. Immittance functions solution of Oldham fractal
Chain and Liu-Kaplan fractal chain fractance. Journal of Terahertz Science and Electronic
Information Technology, 2019, 17(3), pp. 474-481.

Charef A., Sun H., Tsao Y., and Onaral B. Fractal system as represented by singularity function,
IEEE Trans. Automat. Contr., 1992, 37(9):1465-1470.

Charef A. Analogue realisation of fractional-order integrator, differentiator and fractional
PI*D* controller. IEEE Proc. - Control Theory Appl., 2006, 153(6), pp. 714-720.

Charef A. and Boucherma B. Analytical solution of the linear fractional system of commen-
surate order. Computers and Mathematics with Applications, 2011, 62, pp. 4415-4428.

Valsa J., Vlach J. RC models of a constant phase element, Int. J. Circ. Theor. Appl., 2011,
DOI: 10.1002/cta.785

Matsuda K. and Fujii H. H.-optimized wave-absorbing control: analytical and experimental
results, Journal of Guidance, Control and Dynamics, 1993, 16, pp.1146-1153.

Oustaloup A., Levron F., Mathieu B., Nanot F.M. Frequency-band complex noninteger
differentiator: Characterization and synthesis, IEEE Trans. on CAS-I, 2000, 47(1), pp.25-39.
Xiao Yuan, Guoying Feng. Circuit modeling of a rough interface electrode and Liu-Kaplan
scaling equations. 2015 Proceedings of the 26th Academic Annual Conference of Circuits and
Systems Branch, Chinese Institute of Electronics Chang Sha, China, 2015, October 23-26,
pp. 140-148.

Xiao Yuan, Guoying Feng. Fractance class of Oldham fractal chain and new type Liu-Kaplan
scaling equations, 2015 Proceedings of the 26th Academic Annual Conference of Circuits and
Systems Branch, Chinese Institute of Electronics Chang Sha, China, 2015, October 23-26,
pp. 295-300.

Yu B., He Q., Yuan X. Scaling fractal-lattice franctance approximation circuits of arbitrary
order and irregular lattice type scaling equation, Acta Phys. Sin., 2018, 67,070202.

Yu B, Pu, Y., He, Q., Yuan X. Principle and Application of Frequency-Domain Characteristic
Analysis of Fractional-Order Memristor, Micromachines, 2022, 13, 1512.

He Q.Y., Yu B., Yuan X. Carlson iterating rational approximation and performance analysis
of fractional operator with arbitrary order, Chin. Phys. B, 2017, 26, 040202.

He Q.Y., PuY.F, Yu B., Yuan X. Scaling Fractal-Chuan Fractance Approximation Circuits of
Arbitrary Order. Circuits Syst. Signal Process, 2019, 38, pp.4933-4958.

He Q.Y,, Pu Y.F, Yu B., Yuan X. A class of fractal-chain fractance approximation circuit,
Int. J. Electron, 2020, 107, pp.1588-1608.

58



OJIEKTPOHUKA | DnekrpoHuka, poToHuka u kubdepdusuueckue cucremsl. 2023, T.3. Ne3,

55.

56.

S7.

58.

59.

He Q.Y., Pu Y.F, Yu B., Yuan X. Arbitrary-order fractance approximation circuits with high
order-stability characteristic and wider approximation frequency bandwidth. IEEE /CAA
J. Autom. Sin., 2020, 7, pp.1425-1436.

He Q.Y.,, Pu Y.F, Yu B., Yuan X. Electrical Characteristics of Quadratic Chain Scaling
Fractional-Order Memristor, IEEE Trans. Circuits Syst. 1l Express Briefs, 2022, 65,
pp.2903-2916.

Pu Y.F., Zhang N., Wang H. Fractional-order memristive predictor: Arbitrary-order string
scaling fracmemristor based prediction model of trading price of future. IEEE Intell. Syst.
2020, 35, pp.66-78.

PuY., YuB., He Q., Yuan X. Fractional-order memristive neural synaptic weighting achieved
by pulse-based fracmemristor bridge circuit, Front. Inf. Technol. Electron. Eng., 2021, 22,
pp.862—876.

Yi-Fei Pu ,Bo Yu ,Qiu-Yan He and Xiao Yuan. Fracmemristor Oscillator: Fractional-Order
Memristive Chaotic Circuit.,, IEEE Trans. on CAS—I: Regular Papers, 2022, 69(12),
pp. 5219-5232.

MATEMATUYECKHWE MMPUHIUIIBI TIOCTPOEHUSA CXEM ®PAKTAHCHOH
AIINTPOKCUMAIIMU 1 UX ITPHJIOKEHUA

FOanwv Caol, 10 bo?

'Konnemx snexrponnky u uHGOpMaMOHHON HHkKeHepuH ChIuyaHbCKOTO YHHBEPCUTETA
UsHny, 610065, Kurait

?[1Ikonma puU3MKK U MHKEHEPHBIX TexHosoruii, [lenarormdeckuii yausepcuter UsHy
Usnpy, 611130, Kurait

AnHoTaunus: [lanHas ctates HammcaHa K 100-metmro co mus poxaenus Pammpa Illakuposuua
Hurmarynnuna. B nHawanme 1960-x romoB OH BIepBble peayin3oBail (pakTalbHBIA DJIEMEHT,
BBINIOJIHAIOIIMI  onepaunu  AudGepeHupoBaHus W HWHTETPHUPOBAHMS IOJOBHHHOTO MOPSIKa
B DJIEKTPOXMMHUH. B TocienHue rojpl, KOoraa Teopus W NMPUMEHEHHE APOOHOTO HMCYMCICHUS CTalN
ropstieii TeMoit BO MHOTHX 00JIacTsIX, CXeMHOE U MAaTeMaTHYECKOE MOZEINPOBAHUE CIIOKHBIX SIBICHUH
Y TIPOLIECCOB APOOHOTO MOPSI/IKA, a TAKKE MX (PU3MUECKas pean3anus U NpaKTHIecKoe MPUMEHEHUE
CXeM M CHCTEM JpOOHOTO TIOpSAKA SBISIOTCS OCOOCHHO BAXHBIMH W BOCTPEOOBaHHBIMHU.
[IpoexTupoBaHue 1 MocTpoeHue cxeM ppakrancHoit anmpokcumanun (CPA) sBistorest 3QPEeKTHUBHBIM
METOJIOM peajH3alny IPOOHBIX OIIEPaTOPOB U IPOOHBIX IEMEHTOB. B 3T0ii cTaThe MBI MPEICTaBUIHN U
oOcymwm uccinenoBaHus U pa3padboTku B ob6imactu CPA 1o ciaeayronM HallpaBiIeHuAM: 1) MHOHepHI
B uccienosanun C®DA; 2) ocHOBHBIE MOHATHSA 00 3nMeMeHTax cxeM apoOHoro mopsinka U CDA;
3) ¢pakranpHbIe TEMOYeUHBIE CcXeMbl OngeMa W WX MareMaTHYecKHe OIMCaHWs, HEKOTOpPbhIe
kinaccnuaeckue ¢paxraapapie CDA MOJOBUHHOTO MOpsAIKa; 4) MaTeMaTH4ecKHe OCHOBBI aHalM3a B
YacTOTHOW OO0JacTH — XapakTepUCTHKM B YacTOTHOW oOmactTh W paboume XapaKTepHCTHKU;
5) dpakransuble nenouyky Jlro-Kamuiana n mx mMaremaTndeckue onucaHus; 6) TeOpHs MacIITaOHOTO
pacimpeHus ¥ HepeTryIsipHble YpaBHEHHUS MacIITaOupOBaHuUsI.

KoaioueBble ciioBa: (pakTagbHBIA dJIEMEHT, (pakTajabHBINA orneparop, ¢ppakTanc, Gpakrop, dppakra,
cXeMbl (DpaKTaHCHOH aNnmpoKCUMAINH, Pabodre XapaKTepUCTUKH, MOAEINPOBAHIE aHAJIOTOBBIX CXEM,
MareMaTuyeckasl palMoOHaNbHas aNMpoKCHMalMs, MaciuTaOHOe pacIIMpeHne, HEeperyispHble
ypaBHEHUS MacIITaOUPOBaHUSL.
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