УДК 681.586.5

05.11.07

ИНФОРМАЦИОННАЯ СТРУКТУРА СВЕРХУЗКОПОЛОСНОГО ПАКЕТА ДИСКРЕТНЫХ ЧАСТОТ КАК ЗОНДИРУЮЩЕГО ИЗЛУЧЕНИЯ НОВОГО ТИПА ДЛЯ РАДИФОТОННЫХ ВЕКТОРНЫХ АНАЛИЗАТОРОВ

А.А. Кузнецов, А. Лиц, Е.В. Мочалова, С.Р. Галиев, И.И. Шайгарданов

Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ Российская Федерация, 420111, г. Казань, ул. Карла Маркса, 10

Аннотация. В работе дано определение нового типа зондирующего излучения для радиофотонного векторного анализатора – сверхузкополосный пакет дискретных частот. На примере трехчастотного пакета продемонстрированы основные свойства этого излучения.

Ключевые слова: радиофотонный векторный анализатор, радиофотоника, модуляция оптического излучения, сверхузкополосный пакет дискретных частот.

1. Сверхузкополосный пакет дискретных частот: определение

Современные тренды развития измерительного оборудования для контроля характеристик волоконно-оптических компонентов связаны с использованием принципов радиофотоники для повышения их метрологических и технико-экономических характеристик. В работах [1–5] приведены примеры радиофотонных векторных анализаторов (РФВА), использующие различные виды зондирующих излучений, определены их преимущества и недостатки. Стоит отметить, что ни один из существующих типов РФВА не раскрывает в полной мере потенциал радиофотонных методов обработки информации [6–9], поэтому в рамках данной работы перед авторами стоит задача предложить и новый тип излучения и обосновать достижимое улучшение характеристик, рассмотрев его информационную структуру.

Сверхузкополосный пакет дискретных частот (СПДЧ) – излучение, содержащее две и более частотные компоненты с фиксированными разностными частотами, максимальная из которых подобрана таким образом, что при прохождении такого излучения через исследуемое устройство (ИУ), изменение амплитуд всех гармоник происходит пропорционально одной и той же величине, а минимальная – превышает спектральную ширину лазера, при этом начальные фазы каждой из компонент строго детерминированы, а их разность известна.

Сформулированные выше требования к СПДЧ [10-12] позволяют: исследовать спектральные характеристики произвольных ИУ как с симметричным, так и асимметричным профилем; исключить необходимость обработки постоянной составляющей сигнала; анализировать сигнал на выходе фотоприемника на фиксированных и заранее известных разностных частотах; исключить необходимость предварительного сканирования контура ИУ с целью размещения зондирующего излучения симметрично относительно его резонансной частоты; избежать ограничений на минимальный шаг перестройки; исключить необходимость дополнительного анализа фазы сигнала на выходе фотоприемника, возникающей при зондировании контуров с асимметричным профилем; сканирования как полосовых обеспечить возможность широкополосных, сверхузкополосных структур с заранее заданной разрешающей способностью; упростить способ формирования сканирующего излучения; сформировать универсальный подход к вычислению амплитуд, вне зависимости от количества гармоник зондирующего излучения.

В общем случае число компонент, их начальные амплитуды, фазы и шаг частот могут быть произвольными (но известными). Для простоты восприятия рассмотрим частный случай симметричного трехчастотного СПДЧ.

2. Информационная структура симметричного трехчастотного СПДЧ

Для описания математической модели СПДЧ и определения его информационной структуры *введем ряд допущений* на основе обобщенной структурной схемы анализатора (рис. 1).

Рис. 1. Устройство зондирования ИУ:

ФСУ – формирователь сканирующего излучения, ИУ – исследуемое устройство, К – ключ, ФП – фотоприемник, ФНЧ – фильтр нижних частот, ПФ – полосовой фильтр

Предположим, что флуктуации амплитуд, частот и фаз гармоник излучения отсутствуют. Каждая компонента сверхузкополосного пакета дискретных частот описывается монохроматическим излучением (1), спектр которого сводится к дельтафункции Дирака.

$$S(t) = Se^{j(\omega t + \phi)} \tag{1}$$

где *S*, ω и φ – амплитуда, частота и начальная фаза компоненты излучения, *j* – мнимая единица. В реальности излучение вида (1) получить невозможно, любое лазерное излучение имеет конечную (не нулевую) спектральную ширину линии излучения.

Исследуемое устройство. Предположим, что ИУ изменяет только амплитудные и фазовые характеристики излучения. Влиянием поляризации, поляризационно-модовой дисперсией (ПМД) и другими искажениями в ИУ, в том числе нелинейными, пренебрегаем. Несмотря на кажущуюся жесткость выдвинутых ограничений, они могут быть применены к исследованиям широкого класса ИУ, таких как: волоконные брэгговские решетки (ВБР), адресные волоконные брэгговские структуры (АВБС), мультиплексоры WDM, чирпированные ВБР, разветвители, аттенюаторы и другие пассивные устройства ВОЛП.

Фотоприемник (ФП). В качестве фотоприемника используются фотодиоды. Фотодиод – нелинейный элемент, ток которого пропорционален квадрату модуля принимаемого оптического излучения:

$$P(t) = |S(t)|^{2} = S(t) \times S(t)$$
(2)

где S(t) – принимаемое оптическое излучение, P(t) – ток фотоприемника, а верхней горизонтальной чертой обозначена операция комплексного сопряжения.

Набор фильтров (ФНЧ, ПФ1...ПФN). АЧХ фильтров считаем идеальной, ширина

полосы пропускания ПФ в точности совпадает со спектральной шириной линии излучения. Коэффициенты передачи ФНЧ и ПФ считаем равными единице. Это ограничение математической модели можно считать достаточно жестким, но оно является прямым следствием сделанных допущений на спектральную ширину линии излучения, и несмотря на это, позволяет построить адекватную математическую модель.

Пассивные элементы оптического и электронного трактов измерительной системы линейны, затухания отсутствуют, спектральные характеристики пропускания и РЧ передаточные характеристики всех элементов равномерны во всей полосе используемых частот.

В качестве примера рассмотрим симметричный СПДЧ, содержащий три компоненты, и продемонстрируем, как с его помощью достигаются описанные требования. Порядок взаимодействия такого излучения с контуром ИУ в точке сканирования приведен на рис. 2.

Рис. 2. Взаимодействие трехчастотного СПДЧ с ИУ в точке сканирования: *a* – СПДЧ до взаимодействия с контуром, *б* – после взаимодействия с контуром

Ток фотоприемника в этом случае представляет собой огибающую биений гармоник зондирующего излучения:

$$P(t,\omega) = l^{2}(\omega) + c^{2}(\omega) + r^{2}(\omega) + +2[c(\omega)l(\omega) + r(\omega)c(\omega)]cos(\Omega t) + ,$$
(3)
+2l(\omega)r(\omega)cos(2\Omega t)

где $l(\omega)$, $c(\omega)$ и $r(\omega)$ – амплитуды (левой, центральной и правой частот) трехчастотного СПДЧ, прошедшего через ИУ, Ω – разностная частота СПДЧ.

Выделив с помощью ФНЧ постоянную составляющую, а с помощью ПФ – биения на частотах Ω и 2 Ω , получим систему из трех уравнений относительно трех неизвестных $l(\omega), c(\omega)$ и $r(\omega)$:

$$\begin{cases} D_0 = l^2(\omega) + c^2(\omega) + r^2(\omega) \\ D_\Omega = 2 \cdot [c(\omega)l(\omega) + r(\omega)c(\omega)] \\ D_{2\Omega} = 2 \cdot l(\omega) \cdot r(\omega) \end{cases}$$
(4)

Критерий пропорционального изменения амплитуд гармоник сканирующего излучения:

$$\frac{c(\omega)}{C} = \frac{l(\omega)}{L} = \frac{r(\omega)}{R} = \gamma(\omega), \qquad (5)$$

где γ(ω) – коэффициент изменения амплитуд, одинаковый для всех гармоник СПДЧ. Подстановка (5) в (4) упрощает систему уравнений:

$$\begin{cases} D_0 = \gamma^2(\omega) \Big[L^2(\omega) + C^2(\omega) + R^2(\omega) \Big] + o(\Omega) + N_0 \\ D_\Omega = 2\gamma^2(\omega) \cdot \Big[C(\omega) L(\omega) + R(\omega) C(\omega) \Big] + o(\Omega) + N_\Omega \\ D_{2\Omega} = 2\gamma^2(\omega) \cdot L(\omega) \cdot R(\omega) + o(\Omega) + N_\Omega \end{cases}$$
(6)

где о(Ω) – вклад в информационный сигнал перекрестных биений боковых частот высокого порядка левой и правой боковых полос на частоте Ω , N_0 – шум фотоприемника на нулевой частоте, N_Ω – в полосе частот фильтра.

Исключение из рассмотрения постоянного сигнала D_0 (имеющего худшее отношение сигнал/шум), дает два равноправных уравнения для вычисления одной и той же неизвестной величины – коэффициента пропорциональности изменения амплитуд $\gamma(\omega)$, что позволяет, как минимум, сформулировать критерий попадания сканирующего излучения в контур ИУ:

$$|\gamma_{\Omega} - \gamma_{2\Omega}| \leq \varepsilon \tag{7}$$

где γ_{Ω} и $\gamma_{2\Omega}$ значения параметра γ , вычисленные из сигналов D_{Ω} и $D_{2\Omega}$, ε – величина, определяющая погрешность измерения.

Таким образом, информационная структура двухчастотного СПДЧ должна удовлетворить всем сформулированным требованиям и позволить восстановить характеристики ИУ с произвольной формой контура. Трехчастотный СПДЧ, обладая богатой информационной структурой, позволяет дополнительно сформулировать критерий попадания зондирующего излучения в контур ИУ.

Заключение

В работе описана информационная структура сканирующего излучения для построения радиофотонных векторных анализаторов нового типа, названного сверхузкополосный пакет дискретных частот, определяемого как излучение, содержащее две и более частотные компоненты с фиксированными разностными частотами, максимальная из которых подобрана таким образом, что при прохождении такого излучения через исследуемое устройство, изменение амплитуд всех гармоник происходит пропорционально одной и той же величине, а минимальная – превышает спектральную ширину лазера, при этом начальные фазы каждой из компонент строго детерминированы, а их разность известна. Представлены основные аналитические соотношения для восстановления амплитудно-частотной характеристики в частном случае симметричного трехчастотного сверхузкополосного пакета дискретных частот.

Работа выполнена при поддержке Минобрнауки РФ в рамках государственного задания КНИТУ-КАИ № 075-03-2020-051 (fzsu-2020-0020, программа «Фократ»).

СПИСОК ЛИТЕРАТУРЫ

1. *Román, J.E.* Spectral characterization of fiber gratings with high resolution / J.E. Román, M.Y. Frankel, R.D. Esman // Optics Letters. – 1998. – V. 23, № 12. – P. 939-941.

2. *Hernández, R.* Optical vector network analysis based on single-sideband modulation/ R. Hernández, A. Loayssa, D. Benito // Optical Engineering. – 2004. – V. 43, № 10. – P. 2418-2421.

3. Loayssa, A. Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation / A. Loayssa // Optics Letters. -2004. - V. 29, No 6. - P. 638-640.

4. *Gifford*, *D.K.* Optical vector network analyzer for single-scan measurements of loss, group delay, and polarization mode dispersion / D.K. Gifford // Applied Optics. -2005. - V. 44, No 34. - P. 7282-7286.

5. *Xue, M.* Influence of Unwanted First-Order Sideband on Optical Vector Analysis Based on Optical Single-Sideband Modulation / M. Xue, S. Pan // Journal of Lightwave Technology. – 2017. – V. 35, N_{0} 13. – P. 2580-2586.

6. Папазян, С.Г. Методы формирования асимметричного трёхчастотного излучения со смещённой несущей в задаче оптического векторного анализа / С.Г. Папазян // XXIV Туполевские чтения (школа молодых ученых) Материалы Международной молодёжной научной конференции. – 2019. – С. 515-520.

7. *Morozov, O.* Ultrahigh-Resolution Optical Vector Analyzers / O. Morozov // Photonics. 2020. – V. 7, № 1. – P. 14.

8. *Morozov, O.G.* Optical vector analyzer based on carrier-suppressed double-sideband modulation and phase-shift fiber Bragg grating / O.G. Morozov // Optical Technologies for Telecommunications 2018 Proc SPIE. – International Society for Optics and Photonics. 2019. V. 11146. P. 111460R.

9. *Morozov, O.* Optical vector analyzer for characterization of Fano resonance structures based on unbalanced double-sideband modulation / O. Morozov // ITM Web of Conferences. – 2019. – V. 30. – P. 14003.

10. *Кузнецов, А.А.* Концепция построения радиофотонных оптических векторных анализаторов нового типа / А.А. Кузнецов // Электроника, фотоника и киберфизические системы. – 2021. – Т. 1, № 1. – С. 47-55.

11. *Кузнецов, А.А.* Концепция построения радиофотонных векторных анализаторов на основе сверхузкополосного пакета дискретных частот / А.А. Кузнецов // Инженерный вестник Дона. – 2021. – №9. – Режим доступа: ivdon.ru/ru/magazine/archive/n9y2021/7205, свободный (дата обращения 24.10.2021).

12. *Кузнецов, А.А.* Сравнительная оценка способов формирования излучений в виде сверхузкополосного пакета дискретных частот / А.А. Кузнецов // Инженерный вестник Дона. – 2021. – №9. – Режим доступа: ivdon.ru/ru/magazine/archive/n9y2021/7199, свободный (дата обращения 24.10.2021).

INFORMATION STRUCTURE OF THE ULTRA NARROWBAND PACKAGE OF DISCRETE FREQUENCIES AS A NEW TYPE OF PROBE RADIATION FOR MICROWAVE PHOTONIC VECTOR ANALYZERS

Artem A. Kuznetsov, Artur Lits, Ekaterina V. Mochalova, Sirin R. Galiev, Ilshat I. Shaigardanov

Kazan National Research Technical University named after A.N. Tupolev-KAI 10, Karl Marx St., Kazan, 420111, Russian Federation

Abstract. The paper gives a definition of a new type of probing radiation for a microwave photonic vector analyzers – an ultra-narrowband packet of discrete frequencies. The basic properties of this radiation are demonstrated by the example of a three-frequency packet.

Keywords: microwave photonic vector analyzer, microwave photonics, modulation of optical radiation, ultra-narrowband packet of discrete frequencies.

Дата поступления статьи в редакцию 25.11.2021